Final Report

Inova Fairfax Hospital South Patient Tower Falls Church, VA

04/04/2012

Jianhong Qiu

Construction Management Option

Advisor

James, Faust

INOVA FAIRFAX HOSPITAL SOUTH PATIENT TOWER FALLS CHURCH, VA

INOVA' FAIRFA

Project Overview

Owner: Inova Fairfax HospitalSize:216,000sf Levels:12above/1below grade Cost:\$76million Construction Date:Jul2010-Aug2012 Delivery Method: Design-bid-build

Project Team

General Contractor:Turner Construction Architect:Wilmot Sanz, Inc. MEP: RMF Engineering, Inc. Civil: Dewberry&Davis LLC Structural: Cagley& Associates Electrical: Turland Service Corporation

Structural System

5000PSI Concrete for ground to fourth floor. 4000PSI Concrete for six to 12 floor Typical Floor with 9 1/2" twoway flat slab with bot top and bottom steel reinforcement 5th Floor 10 1/2" due to the mechanical room

Electrical System

Fed by two 2,000kVA transformers located to the west of the tower Seven sets of 4-#750 MCM wires from each transformer 2000KW emergency generator to serve the tower

Mechanical System

Mechanical room located on the fifth floor Four 50,000 CFM air handlers for majority of the building

Two other air handlers for the cafe and kitchen Oxygen, medical air and medical vacuum system piped into the patient room

JIANHONG QIU Architectural Engineering Construction Option http://www.engr.psu.edu/ae/thesis/portfolios/2012/JXQ112/

Turner

1.0 Executive Summary

In the final report, four depth analyses for the Inova Fairfax Hospital South Patient Tower have been performed. Many new strategies and new technologies are addressed into these analyses in order to improve the constructability and efficiency of the project.

Analysis #1: Increase Building Information Modeling(BIM) servies for the Owner.

The first Analysis topic is the critical industry issue that will be pursued based on the experience, interests at the PACE Roundtable meeting. So far, the only usage of BIM into the South Patient Tower is the coordination of the MEP system. The purpose of this analysis is to maximize the implementation of BIM into the project to benefit the owner in terms of cost and time savings by reducing the change orders and coordinating the work at an early stage of the process and also through out the whole construction process.

Analysis #2: Short Interval Production Schedules (SIPS)-Schedule Acceleration

Base on the previous study and research, since the South Patient Tower is located on the Inova Fairfax Hospital campus tying to the existing building tower and is surrounded by other buildings such as Heart and Vascular Institue, Emergency Department, Women's center and Children's Hospital. This results the expectation of minimum impact to the neighborhood. For this reason, a more accurate and efficient schedule is expected to avoid the potential mistakes, delays and unforeseen changes of the project. SIPS is the main study focus for this Patient Tower to smooth the construction process, maintain and even accelerate the schedule.

Analysis #3: Net Zero Energy Building- Sustainability

The design and project team for South Patient Tower are striving to achieve LEED silver certification on this project. The major sustainable features include green roof, rain gardens, water cisterns and so on. A higher level of sustainability can be pursued to achieve the Net Zero Energy goal which is becoming a more and more popular issue in building construction industry.

Analysis #4: Integrated Project Delivery (IPD)

Integrated Project Delivery (IPD) is a project delivery approach which integrated people, system, business structures and practices into one process that collaboratively harnesses the talents and insights of all participants to optimize the project results. There is a potential possibility to accelerate the schedule and increase the constructability of the South Patient Tower by implement the IPD principles. A study on the IPD Guide from The American Institute of Architects was done to help complete the analysis on IPD.

2.0 Acknowledgements

Academic Acknowledgments

Penn State AE faculty

Thesis advisor:

Craig Dubler

James Faust

Industry Acknowledgments

Turner Construction Project Team

Tessa R. Teodoro

Holly Allison

Drew Kelleher

Richard S. Davis

Johnny F. Weaver

PACE Industry Members

My Family and Friends

3.0 Table of Content

1.0 Executive Summary	3
2.0 Acknowledgements	5
3.0 Table of Content	7
4.0 Project Overview	9
4.1 Project Introduction	9
4.2 Local Condition	11
4.3 Client Information	13
4.4 Project Staffing Plan	14
4.5 Project Delivery System	16
4.6 Site Plan	17
5.0 Design & Construction Overview	18
5.1 Building Cost Summary	18
5.2 General Condition Estimate	20
5.3 Detailed Schedule	22
5.4 Building System Summary	24
5.4.1 Demolition	24
5.4.2 Structural Steel	.24
5.4.3 Cast-in-place Concrete	25
5.4.4 Precast Concerete	25
5.4.5 Masonry	26
5.4.6 Mechanical System	26
5.4.7 Electrical System	26
5.4.8 Curtain Wall	26
5.4.9 LEED evaluation	27
5.4.10 National Model Codes	
6.0 Analysis#1 Increase Building Information Modeling Servies	
6.1 Problem Identification	
6.2 Idea and Thoughts from PACE Roundtable meeting	
6.3 Identify and Recommend Other Potential Areas of BIM Application	34
JIANHONG QIU SENIOR THESIS FINAL REPORT	7

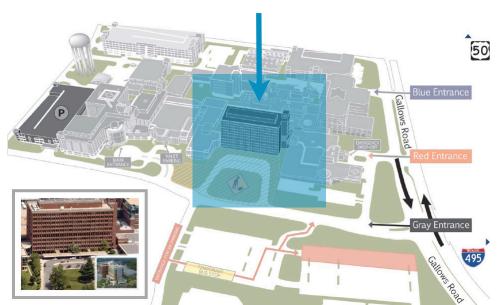
INOVA FAIRFAX HOSPITAL SOUTH PATIENT TOWER	April 3rd, 2012
6.4 Investigation of Potential tools	
6.5 BIM Scorecard	
6.6 Return on Investment (ROI) of BIM	40
6.7 Further benefit from implementation of BIM	41
7.0 Analysis#2 Short Interval Production Schedules(SIPS)	43
7.1 Problem Identification	
7.2 Research study and Recommendations	43
8.0 Analysis#3 Net Zero Energy Building Sustainability	49
8.1 Problem Identification	
8.2 Study and research on Net-zero energy	
8.3 Investigation on additional energy efficient solutions	51
Mechanical Breadth	
Electrical Breadth	59
9.0 Analysis#4 Integrated Project Delivery(IPD)	61
9.1 Problem Identification	61
9.2 Research Goals (steps to achieve the analysis/research)	
9.3 Study on Integrated Project Delivery A Guide(AIA)	63
9.4 Proposal: Multi Prime Contracts	
APPENDIX A BIM SCORE REPORT	69
APPENDIX B SITE PLAN	74
APPENDIX C FACADE DESIGN ENERGY ANALYSIS	
APPENDIX D LEED SCORE CARD	
APPENDIX E COST ESTIMATE	
APPENDIX F BIM ANALYSIS	95
APPENDIX G MILESTONES SCHEDULE	
APPENDIX H HILL-ROM PRODUCT SHEETS	
APPENDIX I DETAILED SCHEDULE	
APPENDIX J SIPS SCHEDULE	

4.0Project Overview

4.1Project Introduction

Figure1

Inova Fairfax Hospital South Patient Tower, being located on 3300 Gallows Road, Falls Church, VA is a **\$76 million** project started in July 2010. This is an 11 stories patient tower adjacent to the south of the existing hospital building. The tower will include 174 private patient rooms for both general and intensive care units, which will significantly alleviate overcrowding in the existing tower building. Five floors are dedicated to medical/surgery beds and three floors to ICU beds. Hospital officials expect this **216,000-square-foot** tower to be complete by **fall 2012**.


Wilmot Sanz of Gaithersburg, MD is the project architecture firm that has worked with the hospital to develop a Master Facilities Plan which addresses the evolving healthcare needs of the region.

Tuner Construction Company, the nation's largest builder of healthcare facilites is selected to construct the south tower. The South Patient Tower is designed and being constructed to achieve LEED Sliver certification from the United States Green Building Council. They have the green features including

green roof, rain gardens, water cisterns and so forth. Low and no VOC paints, carpets and furniture and the installation of efficient energy and insulation systems are used as well.

RMF Engineering is the engineering company for Inova Fairfax Hospital South Patient Tower. It has been working with Inova Fairfax Hospital on other projects such as the heart & vascular institute before. It has the service of mechanical, electrical, civil, and structural engineering as well as utility infrastructure and commissioning.

Truland Service Corporation, a member of the Truland Group of Companies is the selected electrical contractor by Turner Construction for the Inova South Patient Tower project. It provides preventive maintenance and repairs; emergency response; disaster recovery; fire alarm, life safety and critical power systems testing and maintenance; predictive maintenance; energy management services; electrical construction including power, critical power, and lighting systems and controls throughout the D.C. metro area.

Existing Building

Figure2

4.2 Local Condition

Figure3

The Inova Fairfax Hospital South Patient Tower is located on 3300 Gallows Road Falls Church, Va. The city has a total area of 2.2 square miles , all of it land. The center of the city is the crossroad of VA State Route7. The Tripps Run watershed drains two-thirds of the city of falls church, while the Four Mile Run watershed drains the other third. The ground water quality is generally good in Virginia. This vital resource is threatened by many potential contaminants and there have been isolated cases of serious ground water pollution in the state.

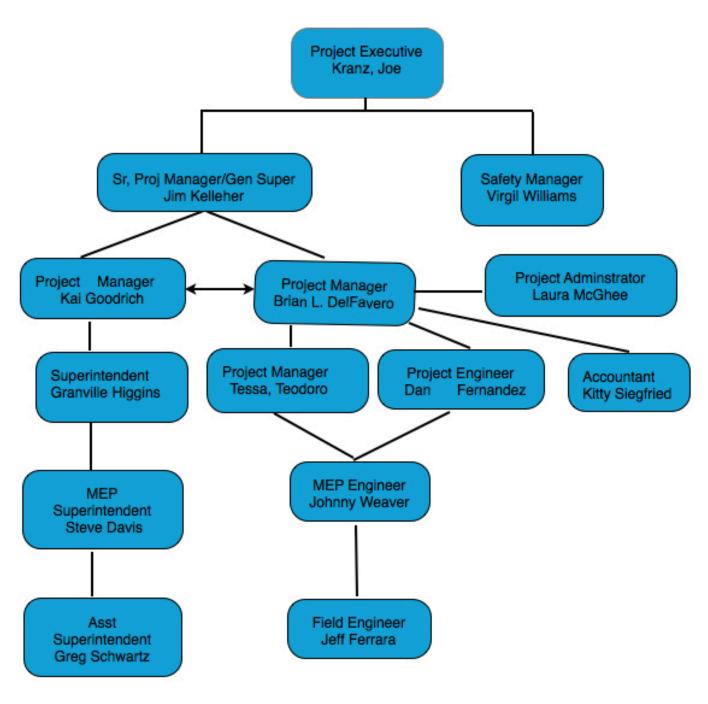
Owner will employ a qualified independent geotechnical engineering testing agency to classify proposed on-site and borrow soil to verify that soils comply with specified requirements and to perform required field and laboratory testing.

Existing utilities do not interrupt existing utilities serving facilities occupied by the owner or others except when permitted in writing by the architect and then only after acceptable temporary utility services have been provided. A minimum 48 hours notice to the architect and receive written notice to proceed

before interrupting any utility. Coordinate with utility companies to shit off services if lines are active.

4.3Client Information

InovaFairfax Hospital, Inova Health System's flagship hospital, is an 833-bed, nationally recognized regional medical center serving the Washington, D.C., metro area. The hospital is consistently ranked among the top healthcare providers in the United States.


Special emphasis on a safe, healing environment for adult patients, focusing on the specific needs of the medical/surgical patient, who is often 65 years or older. Cost, quality, schedule, and safety are some of the key areas of focus for this project. While cost, quality, and schedule are important, nothing is more important to this client than the safety of its patients and the workers on site.

Because of the growing demand, the new patient tower was constructed. The new tower includes the following highlights and features:

- Physician, nurse and staff input helped determine building design
- Focuses on the specific needs of the medical/surgical patient, who is often 65 years or older
- · Special emphasis on a safe, healing environment for adult patients
- 360-degree clinical access to ICU patients
- Patient monitoring systems on all floors
- Strategically positioned workstations to ensure patient privacy while enhancing monitoring capabilities
- "Green" design includes low-flow plumbing, low- or no-VOC buildings materials and furniture, living roof with water cisterns and rain gardens

4.4 Project Staffing Plan

Staffing Plan

The figure above presented the Turner's managing staff plan for the Inova Fairfax Hospital South Patient Tower project. Turner has put great effort on chooseing their expertises to deliver a final product that will meet the client's needs. As outlined in the organizational chart above, it involves a number of different players that play a key role. First is the project executive who oversees the entire project. Underneath is the senior project manager and the safety manager who reports directly to the safety system such as OSHA. And followings are the project managers and engineers with superintendent below. The staff sizes vary on each project mainly depending on the sizes and complexity of the project.

4.5 Project Delivery System

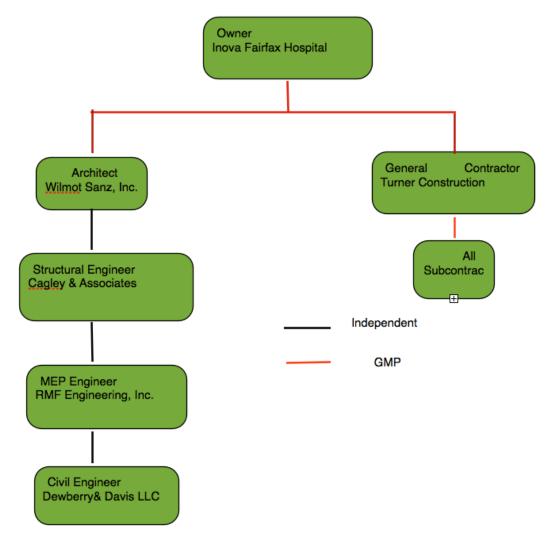


Figure 5

The Project delivery method is Design- bid-build with a negotiated Lump-Sum contract. Turner Construction acts as the general contractor of the project along with the architect and engineering firms to work on the design and construction work. The final BIM is coordinated by Turner construction instead of each engineering firm.

4.6 Site Plan

The site of the South Patient Tower is located in the south side of the existing hospital building. which used to be the main entrance of the existing building. So the landscape of the are will be redesigned and re-functioned. On the east side of the tower is the site for Women Hospital, which will be constructed later. And next to the Women Hospital site is the Emergency department of the hospital with the temporary parking lot in front of it. As shown in pictures below.see **APPENDIX B** SITE PLAN.

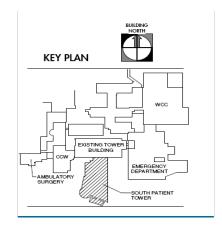


Figure 6

Figure 7

Both the tower crane and the lay-down area will be located on the east down south side of the building.

Figure 8

Figure 9

5.0 Design & Construction Overview

5.1Building Cost Summary

The actual construction costs are based on a Schedule of Values report provided by the Construction Manager. Though the major building system costs are not provided by the owner. Some of the costs are based on the RS Means Cost Work Report. See **APPENDIX E** COST ESTIMATE.

Original Construction Cost	\$ 76,014,000
Current Contract Value	\$75,704,832
Cost/ SF	\$ 325/ SF

Building Systems Cost:

System	Total Cost	Cost per Square Foot
Mechanical System	\$7,930,500	\$33.89
Electrical System	\$6,656,500	\$28.45
Structural System	\$29,888,500	\$127.73
HVAC/Plumbing System	\$5,059,500	\$21.62
Fire Protection	\$672,000	\$2.87
Elevators	\$1,510,500	\$6.46

RS Means Estimate:

Perimeter	2,000LF
Square Footage	234,000SF
Floor Height	12.00LF
Cost Per Square Foot	\$324.96
Total Building Cost	\$76,040,000
Actual Building Cost	\$ 76,014,000

Cost Comparison

There is a slightly amount of differences of the building cost between the actual cost and the RS Means estimate cost. The causes can be the location factors, the building information set up in the RS Means cost estimate program. It may also because of some missing components of the building construction process. Besides these factors above, the cost estimate is relatively close to the actual cost.

5.2 General Condition Estimate

The General Condition estimate for Inova Fairfax Hospital South Patient Tower is broken into the following categories: Personnel, Construction Facilities& Aids, Temporary utilities and Miscellaneous Costs.

Due to the availability of the information from Turner Construction, the following Assumptions were made throughout the estimate:

- RS Means2012 was used for the personnel salaries reference.
- Some of the unit prices are based on the online researching results.
- Labor durations are approximation numbers based on the duration of the whole project, which do not reflect the actual number for the project.

The Total General Condition Cost is \$601,850 - approximately 7.9% of the total building cost of \$76million, which is reasonable for most general condition cost in United States. The personnel is found as the largest part around 63% of the total estimate. Construction Facilities & Aids costs 20.7% of the total. It includes items such as office trailers, storage trailers and office supplies. Temporary utilities spent around 9.5% of the total and Miscellaneous cost count as 6.7% of the total General Condition Cost. It is difficult to guarantee the accuracy of the temporary utilities since the durations for the items such as temporary toilets, power, scaffoldings are difficult to decide. Some miscellaneous information is from the experience of previous Turner Construction projects for the insurance, bonds and so forth.

General Condition Summary		
DESCRIPTION	COST(\$)	
PERSONNEL	378,720	
CONSTRUCTION FACILITIES&AIDS	125,180	
TEMPORARY UTILITIES	57,550	
MISCELLANEOUS COSTS	40,400	
TOTAL	601,850	

Below is the summary of the General Condition Cost Estimate:

5.3 Detailed Schedule

The Inova Fairfax Hospital South Patient Tower started the permits & site development on November 3rd 2009 and started the construction on July 8th, 2010. And the expected finish date is June 21, 2010. In order to keep the project on schedule, many milestones are set up for the South Patient Tower. Below is the summary of the Milestone of the project:

Milestone	Contract Days	Current Date	Inova Milestone
Issue NTP			11-oct-10
Make Ready Work	66	14-oct-10	16-dec-10
Concrete Substantial Complete	364	16-sep-11	10-oct-111
Building Watertight	446	15-dec-11	31-dec-11
Plumbing &HVAC Major Components	476	04-jan-12	30-jan-12
Electrical Major Components- Perm Power	442	05-oct-11	27-dec-11
Conditioned Air	490	18-jan-12	13-feb-12
Issue Non RUP	681	21-jun=12	22-aug-12
Substantial Completion	681	18-jun-12	22-aug-12

See APPENDIX I DETAILED SCHEDULE.

The preconstruction phase has the duration of 110 days, began on March 6th, 2010. It also took 131 days for the BIM coordination by Turner Construction to coordinate the MEP system of the building. The major utilities and site work started on October 7, 2011 with a total 127 days. The structure will finish on March 6th, 2012 with the floor pour completed on August 30th, 2011.

<u>Critical Path</u>

As of right now, Tuner Construction are not working any overtime for the South Patient Tower project. Turner is allowing subcontractors to work on the weekends to help maintain the project schedule, but only at the subcontractors' cost. Turner is not paying for this overtime.

In the contract, there have six (6) milestones to track the South Patient Tower's scheduled progress:

- 1) topping out of the concrete;
- 2) building being watertight;
- 3) permanent power into the building;
- 4) plumbing and HVAC major components;
- 5) conditioned air;
- 6) Issuance of Certificate of Occupancy from local jurisdiction.

If these schedule milestones are not met, then Turner Construction will have to pay liquidated damages for each specific milestone. As a team, they meet every week to review materials that have been released and when materials are being delivered to the job site. They are coordinated with the above milestone dates so that Turner all strive to meet these goals. See detailed schedule in **APPENDIX G** MILESTONES SCHEDULE.

5.4 Building System Summary

Work Scope	Yes	No
Demolition	Х	
Structural Steel Frame	Х	
Cast-in-place Concrete	Х	
Precast Concrete	Х	
Mechanical System	Х	
Electrical System	Х	
Masonry	Х	
Curtain Wall	Х	
Support of Excavation	Х	

5.4.1Demolition

Demolition is required since the new south patient tower connects to the existing 11-story patient building to maximize space and patient care efficiencies. Many existing water valve, fire hydrant power line, storm pipe 12" rcp, F.O cables are needed to be either relocated or removed.

5.4.2 Structural Steel Frame

exterior erect cold-formed metal framing to withstand design loads non load bearing framing some of the products have recycled content. Cold-formed metal may be shop or field fabricated for installation or it may be field assembled. Temporary bracing and supports are installed to secure framing and support loads comparable in intensity to those for which structure was designed. Maintain braces and supports in place until entire integrated supporting structure has been complete and permanent connections to framing are secured For exterior non-load-bearing wall installation continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure.

5.4.3 Cast in place concrete

Cast-in-place concrete including formwork, reinforcement, concrete materials mixture design for the footing foundation walls, slabs on grade, building walls and so on. All of the 11 level of the building need concrete pour.

5.4.4 Precast Concrete

Clips, hangers, bearing pads and other accessories required for connecting architectural precast concrete units are used to support members and backup materials. Erecting architectural precast concrete level, plumb, and square within specified allowable tolerances. Temporary supports and bracing are provided to maintain position, stability and alignment as units are being permanently connected connect precast cu in position by bolting ,welding grouting. At bolted connections use lock washers, tack welding to prevent loosening of nuts after final adjustment. Place concrete in a continuous operation to prevent seams or planes of weakness from forming in precast unites. Reinforcing bars are ASTM A 615/A 615M GRADE60 DEFORMED

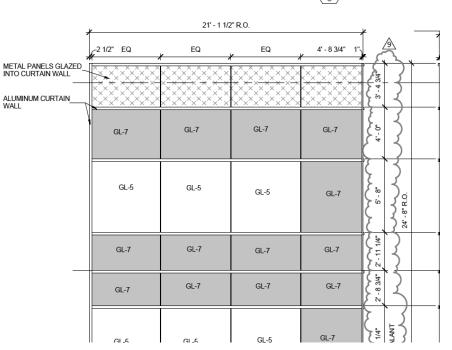
Figure 10

5.4.5Masonry

JIANHONG QIU

The masonry used on the South Patient Tower are used for load bearing purposes. Both CMUs and new face bricks are used for infill and repairs at EBT. Reinforcing steel along with mortar and grout Masonry joint, reinforcement ties and anchors will be used for both interior and exterior walls. And masonry joint reinforcement for exterior walls are hot-dip galvanized carbon steel wire for side roads and veneer ties is W2.8 OR 0.188-Inch diameter masonry masonry containing reinforcing steel in grouted cell.

5.4.6 Mechanical System


The main mechanical system room is located on the fifth floor of the building. The system includes totally six air handling unites and medical gas system, which provide oxygen System type distribution The fire suppression system in place is a wet sprinkler pipe system. In new sprinkler zone assemblies, water flow switches and valve tampers are furnished and installed. The patient elevator machine room in the penthouse, which is located on the roof of the building has three geared elevator machines. Escalator will be installed from the ground floor to the 1st floor.

5.4.7 Electrical System

Dominion Virginia Power is in charge to set the South Patient Tower transformers and pulled the primary feeders into the Existing Tower Building vault. The six transformers are located outside the west side of the building. Truland Service was able to pull the feeders from the Transformers into the Switchgear in preparation for Permanent Power and continue to construct the Main Electrical Switchgear room.

5.4.8 Curtain wall

The curtain wall on the South Patient Tower is to be constructed on all south, east and west sides of the building. The curtain wall is make up of aluminum and glass with metal panels glazed into the curtain wall. Since the south side will look curved, the glass is made up of segmented glass pieces.

$\left< \frac{CW}{8} \right>$

5.4.9 LEED

The design and project team on Inova Fairfax Hospital South Patient Tower are striving to achieve LEED silver certification on this project. The major sustainable features include green roof, rain gardens, water cisterns and so on. The "Green" design also includes low-flow plumbing, low- or no-VOC buildings materials and furniture. The new tower will utilize the latest technology and design for a patient centered, environmentally sustainable facility. Here is the picture from Wilmot Sanz Architect Inc. Showing the major green features in the design.

Figure12

LEED certification is the most recognized standard for building sustainability measurement. The design and project team on Inova Fairfax Hospital South Patient Tower are striving to achieve LEED silver certification on this project. According to LEED rating system, the project is rated based on the LEED 2009 new construction standard, which includes 100 base points for variety of sustainable design strategies. 6 possible Innovation in Design and 4 Regional Priority points. The point range for Silver is from 50-59. See APPENDIX C for LEED Scorecard for detailed subcategories rating of South Patient Tower.

Category	Points
Sustainable Sites	13
Water Efficiency	6
Energy&Atmosphere	18
Materials& Resources	6
Indoor Environmental Quality	14
Innovation &Design process	0
Total	57

The point system is distributed as below through the six categories:

See APPENDIX D LEED SCORE CARD.

Summery of LEED Points

Sustainable Sites

Construction Activity Pollution Prevention: In order to reduce pollution from construction activities by controlling soil erosion, waterway sedimentation and airborne dust generation, control plan during design phase should be created such as mulching and silt fencing.

Site Selection: The South Patient Tower is connected to the existing main hospital building and will enable the master planned expansion of the women's hospital on the east side. So the area is used efficiently without inappropriate site development such as restrictive high-value farmland, high hydrogeologic risk previously undeveloped land, and public parkland. A suitable location and minimal footprint should be designed.

Development Density and Community Connectivity: For this point, there are two options: development density and community connectivity. According to situation of the Inova Fairfax South Patient Tower, option two can be achieved. The site is located on previously developed site with convenient basic services such as bank, restaurant, convenience grocery and so on.

Alternative Transportation

Public Transportation Access: Option 2- Bus Stop Proximity can be achieved for the South Patient Tower. The project is located within 1/4miles walking distance of one or more stops for 2 or more public, campus, or private bus lines usable by building occupants. There three metro bus lines connect the hospital campus with major North Virginia locations, including the Dunn Loring Metro rail Station.

Bicycle Storage& Changing Rooms: bicycle racks and shower/ changing facilities can be adopted into the project to reduce pollution and land development impacts from auto mobile use. As non residential project, the South Patient Tower need to provide bicycle racks within200 yards of the building entrance for 5% or more of building users.

Low-Emitting and Fuel-Efficient Vehicles: The good environmental condition for the is very important for the patients at Inova Fairfax Hospital. Therefore, it is quite necessary to reduce the pollution and land development impacts from the automobile use. The pollution can be reduced or controlled by providing transportation amenities such as alternative fuel refueling stations.

Parking Capacity: In order to minimize parking lot/garage size, South Patient can consider sharing parking facilities with adjacent buildings such as number12 and number13 existing parking for the hospital show in figure 1 below:

Storm-water Design,Quantity: is to limit the disruption of natural hydrology by reducing impervious cover, increasing on-site infiltration, reducing or eliminating pollution from storm-water run off and eliminating contaminants. Pervious paving and other measures can be designed to minimize impervious surfaces in order to protect the natural hydrology

Heat Island Effect, Roof: The South Patient Tower did a good job in reducing heat island effect by designing the green roof and white roof to minimize the impacts on human and wildlife habitats.

Light Pollution Reduction: The site lighting is minimized where possible. Computer software should be used to model the site lighting. light trespass and sky-glow should be minimized.

Water Efficiency

Water Use Reduction:Certain requirement of toilets, urinals, lavatory faucets, showers should be met in order to increase the efficiency of building water uses and also reduce the burden on wastewater systems.

Energy & Atmosphere

Fundamental Refrigerant Management:For new constructed South Patient Tower, specify new HVAC equipment in the base building that uses no CFCbased refrigerants to reduce ozone depletion.

Optimize Energy Performance: The minimum energy cost saving percentage for South Patient Tower is targeting 30% with 10 points rewarded. On-Site Renewable Energy: Renewable energy such as solar, low-impact hydro can be used instead of fossil fuel energy to reduce both environmental and economic impacts.

Materials & Resources

Construction Waste Management: The goal for the Turner construction is to divert 50% construction and demolition debris from Disposal Materials Reuse: 10% reuse of refurbished or salvaged materials can earn South Patient Tower 2 points. This helped to reduce the demand for virgin materials and reduce the waste.

Recycled Content: Project goal should be established to use 10 % of materials with recycled content. Only the materials permanently installed in the project will be counted.

Regional Materials, 20% Extracted: This means the materials needed for the building are processed & manufactured regionally from VA. The environmental impacts will be reduced from transportation.

Indoor Environmental Quality

Outdoor Air Delivery Monitoring: CO2 and airflow measurement equipment need to be installed for South Patient Tower to ensure the quality of air and promote occupant comfort.

Increased Ventilation: Natural ventilation systems for occupied spaces should be put into design to meet the recommendation set forth in the CIBSE. Construction IAQ Management Plan: An IAQ management plan for both during construction and before occupancy should be generated to reduce in door air quality problems to promote the comfort of construction workers and the patients.

Low-emitting material: Many sustainable features such as adhesives&sealants, paints&coatings, Carpet systems, composite wood, low or no-VOC buildings materials and furniture are attributed to South Patient Tower to guarantee the health and comfort of the occupants.

Indoor Chemical & Pollutant Source Control:Potential entry of pollutants into building should be controlled to minimize the building occupant exposure to the hazardous particulates and chemical pollutants.

Controllability of Systems for Lighting and Thermal Comfort: The patient tower should provide a high level of individual or groups control of lighting and thermal comfort system to make it as convenient as possible for patients to get access to them.

Daylight&Views, Daylight 75% of spaces: The natural daylight and view are very important for the patients in South Patient Tower. So a goal to achieve daylighting in 75% of regularly occupied spaces are needed to provide patients with a connection between indoor spaces and the outdoors.

5.4.10 National Model Codes

- Virginia Uniform Statewide Building Code-2006 edtion
- International Building Code(IBC)2006&2006 supplement
- ICC international mechanical code 2006
- ICC international plumbing code 2006
- National Electriccal Code 2005
- International Energy Conservation code 2000
- NFPA National Fire Alarm Code 2007

6.0 Analysis#1 Implementation of Building Information Modeling (BIM)

6.1 Problem Identification

Turner Construction is the leading industry exponent with a lot of BIM project experience. They are willing to help the clients to understand enormous benefits that BIM can offer and prepare themselves for this new technology. Therefore Building Information Modeling(BIM) was only implemented for the coordination of its MEP system into South Patient Tower. Since the South Patient Tower is designed to be connected to the Existing Tower Building (ETB), which was built early in the 1950's when high ceiling space were not considered for the complex MEP system. Therefore, the implementation of BIM in this project was not achieved to its full extension.

As a new innovated healthcare project, South Patient Tower has the potential capability and should pursue a higher level of technology implementation. There are still space that can be explored for additional BIM usage on other portion of the building to shorten the schedule and save the budget.

6.2 Idea and Thoughts from PACE Roundtable meeting

With the in-depth discussions and more researches at the 2011 PACE Roundtable Conference, more ideas and benefits of BIM application are presented. Prior the discussion, professionals and students have reached a consensus that the two main benefits of using BIM are the reducing of change orders and the cost saving. Therefore, many barriers and problems have come up.

Building information modeling(BIM) is changing the way buildings are designed and constructed. The use of BIM has been around for approximately

10 years. It continues to grow. But not all the architects, engineers, manufactures, or construction professionals are eager to jump on board.

One of the problem mention in the discussion is the lag between technological capability and user adoption. When looking at the use of BIM from the owners' perspective, they are usually confused. For most of the time they do not know what they want at the end. Many BIM requirements are not very clear. BIM is implemented into the project sometimes just because it is out there and it is a new technology.

Is BIM changing how buildings are operated and maintained? The introduction of BIM in facility management is also mentioned in the discussion. The majority of the life-cycle cost of a building does not come from the design and construction phase, but from operating the building over 20 to 50 years. BIM can be a helpful tool for performing facility management during the operational phase of a building's life cycle, which can extend over decades to enhance buildings' performance and manage operations more efficiently. It is very tough to specify the level of details of the model is.

Separate groups must get together for BIM coordination, which results in another challenge of risks and liabilities. Since a lot of sharing information and coordinations are needed through the whole process. It is quite crucial to draw distinction between each groups when addressing the responsibilities.

When BIM is introduced into a project, challenge at subcontractor level must also be considered. It is difficult for smaller firms to keep up with the technology maintenance. Current workforce need to be educated and retrained to adopt BIM. Companies need a series of training programs to assit training their workers. Behavioral barriers make the more practical and appealing use of BIM implementation a long term process. See **APPENDIX F** BIM ANALYSIS.

6.3 Identify and Recommend Other Potential Areas of BIM Application Building Information Modeling (BIM) was used in South Patient Tower building as a tool to help coordinate the complex MEP system for this healthcare project. This has greatly helped to minimized problems during the installation process. As a new innovated medical project, South Patient Tower has the capability and should pursue a higher level of technology implementation. Combining the facility management with BIM could be a great way to help Inova healthcare system to win in a long run.

Utilizing BIM for other areas of the project can by identified in further research. These specific areas can be pre-construction phase, facility management, and even a fully developed strategy for the owner's future use on its projects. BIM 3D AND 4D modeling can make great contribution to communications between owners, designers, and contractors.

Benefits from BIM in facility Management has taken project construction technology to the next level. Inova health system can benefit from BIM postconstruction to visualize the space, review layout changes, analyze energy use data, allocate asset and maintain facilities.

6.4 Investigation of Potential tools

The scope of BIM needs high level of communication, data and information exchange to reach its full capacity. Many tools are created to support BIM. The following are the research on the authoring BIM tools:

6.4.1 VICO 5D MODEL SOFTWARE

is able to leverage many really important BIM files formats such as Revit, Tekla, ArchiCAD and so on.

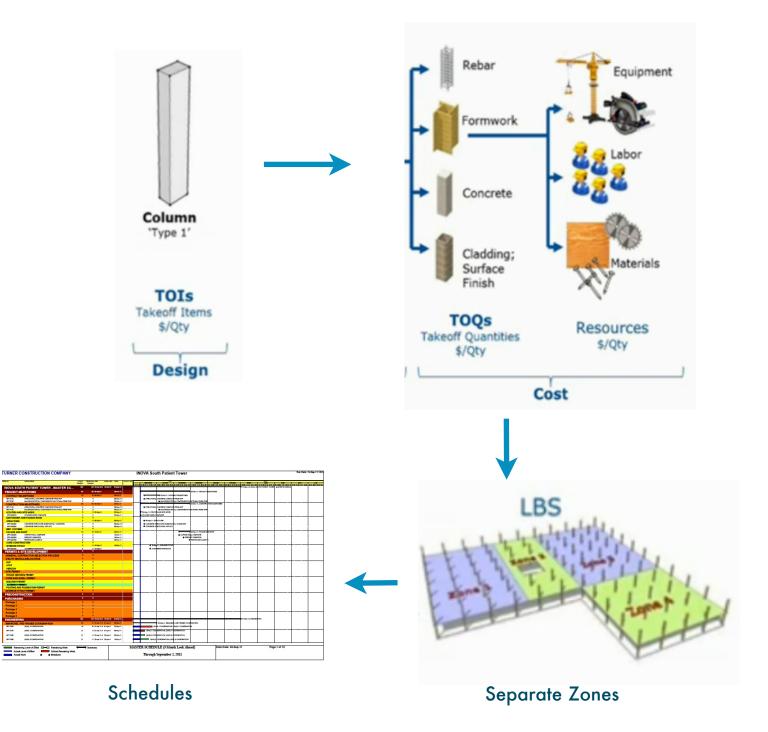
- 2D Drawing: Tells a much more engaging story especially for the owner and so help to win the deal.
- 3D Construct-ability and Coordination: Changes can be proposed, thousands of RFIs can be resolved even prior the shovel breaks ground, instead of onsite or at last minutes.

- 4D Scheduling and Production Control: trades can be sequences in a optimized way so that undue rushing and low quality issues can be avoided and guarantee a smooth flow through the construction site.
- 5D Estimation and Cost Planning: A insight for subcontractors and self performed work cost help to preserve the interests of both the owners and the general contractors.

Figure13

Figure 14

How the data flow work


A simple structure such as a column can be built first, and then the data such as materials, quantities can be put in to specify the characteristics of components. The system will automatically generate the related needs for equipment, labors and so on for the activity. Whenever the design is changed, the estimates will be updated automatically as well. The system can also add zones to the building and coming up with the duration of the activities which is the schedule of the project. There are all the automatic behavior from the system. It can be connected to external systems such as google sketchup,Revit, CAD Duct, Primavera and so on.A tightly integrated BIM workflow are as follows:

- 3D BIM Visualization
- clash detection
- quantity takeoff

```
JIANHONG OIU
```

- scheduling and production control
- estimating

As shown below in the figures:

6.4.2 TEKLA Structure

Tekla Structure software used for creating and management of accurately detailed and highly constructible 3D structural models regardless of the materials and complexity. It will cover the whole process from conceptual design to fabrication, erection and construction management.

The functionalities includes:

- steel detailing:
 - modeling function It can create and modify grids, model parts and bolts, create welds, detailed steel connections, erection sequences and so on.
- precast concerete detailing:
 - modeling function it will add load to a model, model reinforcements, create cast units of concrete parts, detailed concerete connections, erection sequences and so on.
- · cast in place
- engineering: Professionals in structural engineering and design are able to collaborate with participants from other projects by sharing same models.
- construction management
- engineering
- viewer

Output function: It can create general arrangement drawings, singel part and assembly drawings, reports and so on.

Collaboration properties: import, export and exchange data with several users in different kinds of formats and be able to be published to be viewed on the internet.

6.5 BIM Scorecard

An calculation of BIM score is achieved here for the South Patient Tower project. BIM scorecard is used to determine how many BIM capabilities are used in the operation with the idea that BIM is not limited to 3D modeling, it is a throughout combination of integrated construction information including design, cost, schedule, cost, coordination, management and so forth.

The BIM capabilities are divided into 6 categories for calculation:

- Portfolio and Project Management: involves the creation and use of project status reports that provide managers insight in planned versus actual progress, material and resource usage, as well as forecasts based on the performance so far. Portfolio Management contains a roll up of this type of reports to the enterprise level.
- Cost Planning: is the evolution of estimating into a more proactive methodology to calculate and report projected cost, using the integration and cooperation with the design discipline to provide rapid and more frequent feedback to partners and owners.
- Cost control: goes along with Cost Planning and is used to determine current status of the project's cost, as compared to earlier versions as well as a set of cost targets per building system.
- 4. Schedule Planning: is more than just drawing bars that reflect the expected (desired?) duration of a task, which results in just an uncoordinated "window of opportunity" for subcontractors that come on board in a later stage: it determines the amount of work by using BIM quantities per location and applying production rates obtained by measuring performance in previous and current projects.
- 5. Production Control: using BIM means: checking completion of the project per location, and deriving the actual progress from quantities rather than guesstimates.
- 6. Design Coordination: Most companies who have "implemented BIM" today are already familiar with the Design Coordination category: clash detections are run on the sets of trade models and issues are resolved by JIANHONG OIU SENIOR THESIS FINAL REPORT

working with the various parties involved, to create a coordinated 3D model for all trades. Design Coordination also involves change management and constructability reviews.

 Design Team Engagement: planning and organizing your design, cost and schedule content to connect seamlessly, and defining a process that all parties follow during the design phases of the project falls in the Design Team Engagement category.

For all of the categories, we have developed three questions: one about use of software, one about best practices and processes and one question about the level of integration with other categories.

Area with the most opportunities are highlighted for further improvement, as well as concerete ideas for improving BIM benefits. Calculated BIM score along with supporting graphs see **APPENDIX A** BIM SCORE REPORT.

6.6 Return on Investment (ROI) of BIM

Before committing more funds to the BIM technology, an analysis will be conducted here as part of the study of implementation of BIM to check the feasibility of BIM to the South Patient Tower.

ROI=Earning/cost

One of the factor need to be consider with the implementation of BIM is the change in productivity. The productivity during the design phase will be low and as time goes by, the project will gain its productivity again after new construction system is put in place.

The following is a standard formula for calculating the first year ROI

A: Cost of hardware and software(\$)

- B: Monthly labor cost(\$)
- C: Training time (Months)
- D: Productivity lost during training(%)
- E: productivity gain after training(%)

A survey created by Revit Architecture Software has collected the approximate data from their online users with the result :

А	6000
В	4200
С	3
D	50
Е	25

 $\frac{(4200-(4200/(1+25\%))) X (12-3)}{6000+ (4200 x 3 x 50\%)} = 61.46\%$

Calculations for a design system is relatively simple. The more complicated the investment, the more complicated the formular will become. For Turner Construction Company, they have many successful experience on utilization of BIM. So the initial cost of hardware and software can be neglected here and the training time can also be shortened or even neglected with the consideration of some new-in employees. Amount all these factors Productivity plays the most important role and hardware and software cost matters the least. The schedule of the project is expected to be compressed by 10%.

6.7 Further benefit from implementation of BIM

<u>Case Study</u>

One of the similar successful case by Turner Construction Company is the 555,000 sq. ft. healthcare facilities at Middle Tennessee Medical Center with a saving of budgeted costs of \$3 millions below the owner's initial target and an JIANHONG OIU SENIOR THESIS FINAL REPORT

additional \$1 million savings due to the BIM enabled prefabrication alone at by the end of the project. The medical center was also completed two months ahead of schedule. The project is about twice the size of South Patient Tower.

The South Patient Tower being complete in August 2012, is only part of the Inova Fairfax 2015 Campus Improvement Plan. Completion of the new patient tower

will enable the master planned expansion of the 600 Figure 16 sf Women's Hospital on campus (As shown in

figure). The whole plan also includes further a new access road, another parking garage, maybe medical offices. This makes the implementation of BIM to the South Patient Tower more feasible and beneficial. Since the investment of the technology and information for SPT can also be fully utilized as reference for the following Women's hospital project.

7.0 Analysis#2 Short Interval Production Schedules(SIPS)

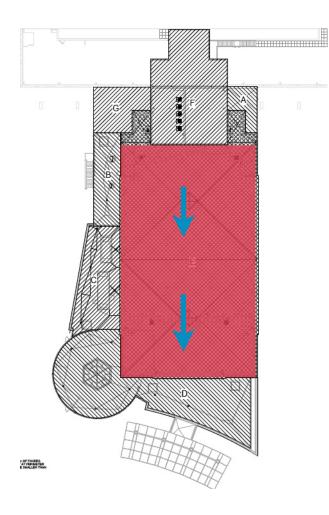
7.1 Problem Identification

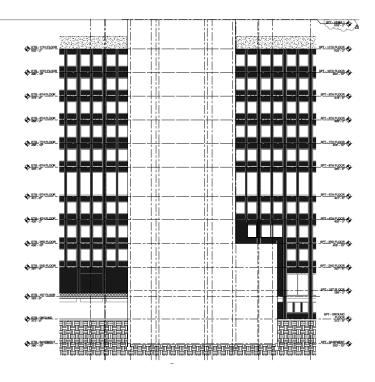
SIPS is a very detailed way to make schedule for a repetitive construction project. It can help to make sure that the project will be complete on time and within the budget. Highly repeatable activities can be the most beneficial by using SIPS such as dorms, hotels, and apartment building. Usually they will have a relatively uniform interior floor plan or building layout. SIPS can be detailed to day to day task and schedule, even to the crew level. The success implementation of SIPS in the project can even save a great amount of time for the construction process.

Resources and Tools to be used

- Architectural Engineering Department Faculty
- AE473 Course Building Construction Management and Control
- Microsoft Project for developing a possible new schedule

Expected Outcome


Development a short interval production schedule for the defined repetitive portion of the construction building so that the overall schedule for the project is expected to be reduced. The related issue such as change of cost and safety concerns due to the develop of SIPS will also be studied and discussed. Since they are two of the most priority concerns for both the construction team and also the owners.


7.2 Research study and Recommendations

The South Patient Tower is an 11 stories patient tower adjacent to the south of the existing hospital building. The tower includes 174 private patient rooms for both general and intensive care units. The first two floors are the main lobby area. The following five floors are dedicated to medical/surgery beds and last three floors to ICU beds.

JIANHONG OIU

The floor plans started from the third floor up to the top floor are relatively similar and repetitive excluded the fifth floor, which is for the mechanical. Even the ceiling height is higher than other floors. So SIPS is considered here as a proposal which may potentially speed up the schedule of the project. As shown in the figures, the main area that SIPS may be implemented is the red section starts from second floor to the top, and the sequences from east to he south side of the building. An detailed schedule is achieved. See **APPENDIX J** SIPS SCHEDULE.

JIANHONG QIU

The following pictures shows the rough originally designed construction process of the South Patient Tower.

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

The floor plans are most likely as shown in the figure below with patient rooms around along the building and the working sessions in the center part of the floor. With identify room numbers and dimensions, standard high performance pre-designed patient and surgery rooms can be pursued.



Figure 25

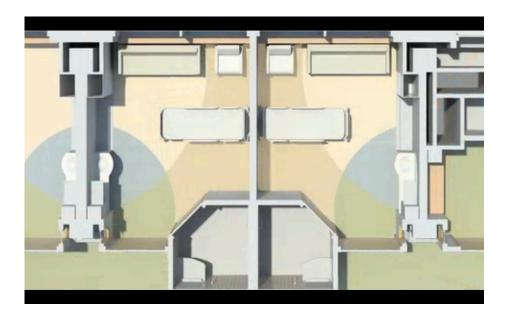


Figure 26

After research, Hill-Rom is proposed as a predesigned medical care/surgery room as part of SIPS to assist as the accelerators of the schedule. With the Room Builder Design Services, Hill-Rom can help to take the guesswork out of planning the new care environment for the hospital.

The closer to the completion date of the project, the more pressure the project team will get to keep staying on schedule and budget. Small details can make the differences. Hill-Rom has provided a very efficient way to finalize the interior room layout in advance to save construction schedule. The clients will be able to see the design in 2D and even 3D renderings.

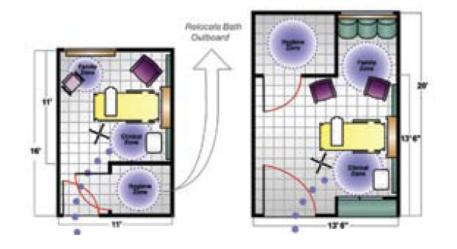


Figure 28

See APPENDIX H HILL-ROM PRODUCT SHEETS.

8.0 Analysis#3 Net Zero Energy Building Sustainability

8.1 Problem Identification

Hospitals are among the most energy intensive of all commercial buildings in the U.S. and the healthcare industry as a whole represents a substantial fraction of total U.S. commercial building energy use.

- Hospitals must operate 24/7 with high demands for cooling, electricity, and hot water.
- Hospitals require redundancy and emergency backup power at all times, and must remain operational even during natural or other disasters.
- Very tight controls are required for temperature, humidity, and ventilation, and those requirements often vary among different space types.
- Precautions must be taken to reduce or eliminate the transmission of infectious diseases through HVAC systems.
- Day-to-day operations are equipment-intensive, but no efficiency rating systems exist for medical equipment.

Acting as a big energy consumer, South Patient Tower has the demand to perform better in sustainability and energy savings. The design and project team for South Patient Tower are striving to achieve LEED silver certification on this project. The South Patient Tower currently has the energy reduction goal of at least 24.5 % based on a database of similar buildings. Many fixtures are attributed to the design to help peruse the goal. The building is highly insulated to improve the building enclosure. Its design of solar control for south-east tower can reduce glare and solar heat gain during summer time. The low emissivity windows will increase the R-value from 10.4 ro 22.4. The design of highly insulated white roof can reduce the urban heat island effect and help to lower the air conditioning costs. Highly efficient mechanical equipment also reduce the costs. There are also green designs including low or no-VOC building materials and furniture, water cisterns, rain gardens and so on. Solar panels used at the main entrance to the lobby of the SPT capture SENIOR THESIS FINAL REPORT **JIANHONG OIU**

free and clean solar energy from the sunlight to power the canopy light at night.

8.2 Study and research on Net-zero energy

The Zero Net Energy (ZNE) goal with the idea of buildings producing as much energy as they use has become a more and more popular issue in building construction industry, which is considered to be the next big movement in green design. Net zero energy is accomplished when the right combination of efficient mechanical equipment, building materials, lighting and appliances are matched with a properly sized solar electric system.

Net-zero energy building is increasingly become the goal for many new constructed buildings all over the world. It is defined that 100% of the building 's energy consumption must be supplied by the on-site renewable energy. Currently, there are only a small number of highly efficient buildings that meet the criteria to be called "Net Zero".

As a result of advances in construction technologies, renewable energy systems, and academic research, creating Net Zero Energy buildings is becoming more and more feasible. The focus is green within the green by seeking environmentally sustainable solution that are cost effective at the same time. The net zero energy building certification is a program operated by the international living future institute. National Renewable energy laboratory (NREL) in its publication Zero Energy Building: A Critical Look at the Dfinition suggests the ways below to define net zero energy:

- Net Zero Site Energy
- Net Zero Source Energy
- Net Zero Energy Costs
- Net Zero Energy Emissions

Net Zero Energy building certification requirement:

- The NZE building's construction and renewable-energy system curb the project's contribution to the effects of sprawled development.
- The building operates at net zero energy.
- The project is built in a way that does not preclude another building from achieving net zero energy operation as a result of excessive shading.
- Renewable-energy systems must be incorporated into the building in ways that are "attractive and inspiring."

8.3 Investigation on additional energy efficient solutions

Top strategies for Energy efficient hospital design

1. Chilled beams

One of the latest innovative cooling technologies to run chilled water through cooling coils located at ceiling level to cool rising warm air. The cooled air then gently descends to occupant levels. It provides a cooling effect with minimal air movement and fan power. The chilled beams achieve their effect by convection. There are available in three types

- Passive
- Active
- Multi-service

Chilled beams may be an efficient, cost-saving alternative to traditional variable-air-volume (VAV) systems in hospital wards where medical equipment is a significant source of internal heat gains

2. Combined heat and power

(CHP, also known as cogeneration) is the use of a generator, such as a steam turbine, heat engine, micro turbine, or fuel cell, to simultaneously produce both electricity and useful heat. Conventional power plants emit the heat created as a byproduct of electricity generation into the environment through cooling towers, as flue gas, or by other means. CHP captures the byproduct heat for <u>JIANHONG OIU</u> SENIOR THESIS FINAL REPORT

domestic or industrial heating purposes, either very close to the generator or for distribution through pipes to meet local heating requirements. Byproduct heat at moderate temperatures (100 to 180°C) can also be used in absorption chillers for cooling. Such a system is sometimes called combined cooling, heating, and power (CCHP) or trigeneration.

CHP is thermodynamically the most efficient use of fuel. In separate production of electricity, some energy must be rejected as waste heat that is given off to the environment, whereas in cogeneration, this excess thermal energy is captured and used, thereby reducing the energy required from other sources to meet heating loads. Depending on the technology used, the efficiency of the system can be raised to 60-80% if supplying heat along with electricity, compared to about 33%, the average efficiency of U.S. fossil-fueled power plants producing electricity only. Hospitals are one of the best cogeneration applications because of their year-round need for hot water or steam. In addition, cogeneration options may help hospitals meet their need for standby generation in the event of a grid outage.

Net Zero Energy Certified members understand the relationship between insulation levels, glass performance, HVAC specifications, lighting design, appliance selection and un-shaded south facing area needed for solar panels. The more efficient the house, the smaller the area required for solar energy production. Very early in the NZE Certified process your architect will need to know how many square feet of solar panels will be required for the project and very likely your architect will have creative ideas of how to accommodate the solar panels without compromising the design. The panels can be roof; ground or trellis mounted and need to face south. Furthermore, they must not be in the shade between 9:00 am and 3:00 pm on December 21.The solar systems will add 2-4% net cost of the building but will eliminate a utility bill and often will be immediately cash positive.

3. Solar electric

Solar Power yield in Falls Church

ITEMS	DATA
Solar Radiation	1432kwh available amount of solar radiation on the project site
Yearly Energy Yield	2,852,646kwh amount of electric energy produced by the photovoltaic system
Peak Power	2766kwh maximum power output the system can produce under ideal circumstances
Daily Energy Yield	7815kwh average electric energy produced by the system on day.

There are still many other issues related to the solar electric. The replacement of whole electrical system with solar electric is still not quite feasible for large project such as South Patient Tower. With the research data, the ratio for the area needed such as for solar panel versus the area of the a typical family house is around 0.2. For SPT, it is 12 floors building with high demand of electricity usage, which makes the need of area of the solar panel too large to be considered.

Utility Bills

The way you pay your utility bills changes when you own a solar electric system. The first difference is the meter. The utility will put in a "net meter" that measures how much energy is being produced compared to how much is being used. For example, if more energy is used than is produced by the PV system, the meter may read a positive number. You can look at this positive number as you owing money to the utility. However, it is apparent that some months are much sunnier than others and therefore, your system will produce more energy. Further, the winter months force one to consume more because of the outside temperature as well as decreased sunny hours. Because of these factors that change throughout the year, the utility company adds up the monthly readings over the course of one year before billing the customer. So

instead of paying a monthly bill, you only pay at the end of the year. This means that if you produce as much as you consume over the course of the year, you will owe no money regardless of the individual months that you used more than your solar electric system produced.

More energy than needed

As of now, the best case scenario for a home is to produce as much energy as it uses. There are no benefits to producing more that it uses. However, there are already feed in tariffs that do apply to many commercial utility customers. These tariffs allow the customers to actually sell back the extra energy their system produces to the utility companies. The sell back rates will be a fixed, non-negotiable price over an extended period of time. Some counties in Florida actually have a feed in tariff program that buys back all of the energy produced by a commercial or residential system at a higher rate than they sell energy for. This gives utilities customers a great advantage by putting in a PV system. In California, they are working to propose a similar system come January 13, 2011.

Windows can have a significant impact on building operating costs, health, productivity and occupant well-being. The traditional purpose of windows was to provide light, view, and fresh air for the occupants. As completely sealed, mechanically ventilated, and electrically lit commercial buildings have become the norm in the last half of the twentieth century, the role of the window in addressing occupant needs has declined. However, there is a growing recognition that the benefits of windows are valuable and contribute to the satisfaction, health, and productivity of building occupants. In addition to the trend toward more human-centered design, there is an urgent need for significant improvements in building energy performance.

Energy & Cost

Windows can be one of the most important components influencing buildings' energy usage, peak electricity demand, and environmental impacts. By providing natural light, windows can reduce electric lighting loads. Proper window selection and design can also cut peak electricity and cooling loads, thereby avoiding costly peak demand charges. In addition, high-performance windows can impact mechanical systems, not only contributing to reduced operation expense but also to potential equipment downsizing, saving capital costs.

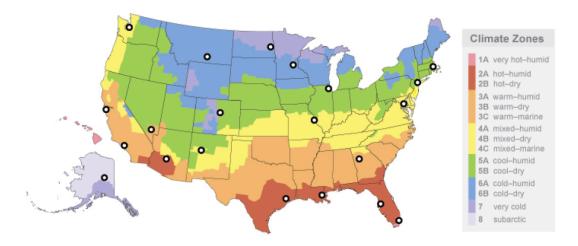
Human Factors

Windows have a direct impact on occupant health, well-being and productivity. Windows directly affect design attributes such as daylight, glare, view, thermal comfort and natural ventilations. The benefits of them can be achieved with careful design that mitigates the potential negative effects of increased glare and reduced thermal comfort

Energy Codes and Standards

In most places in United States, building energy codes are based on the following two codes for a minimum energy efficiency baselines.

- International Energy Conservation Code(IECC)
- ASHRAE Standard 90.1
- National Fenestration Ratings Council Standards (NFRC)


There are other standards developed with more ambitious energy efficiency

- ASHRAE Standard 189
- International Green Construction Code(IGCC)

Mechanical Breadth

Proper window selection and design can reduce peak electricity and cooling loads, thereby avoiding costly peak demand charges and easing the need for new power plants. In addition, high-performance windows impact mechanical systems, not only contributing to reduced operation expense but also to potential equipment downsizing, saving capital costs. Tools such as the Facade Design Tool demonstrate the environmental impacts of various design scenarios—allowing for decisions to be made early in the design process The fenestration area is 22450 ft2, the wall area is 59120ft2. The window area is around 27.5%.

The Facade Design Tool lets you choose the design conditions of a window and rank and compare the performance data in terms of annual energy, peak demand, carbon, daylight illuminance, glare, and thermal comfort. After a location, building type, and orientation have been selected, you have the choice to Refine & Explore or Compare the performance data of window design options that you define in terms of orientation, window area, daylight controls, interior shades, exterior shades, and window type.

Falls church belongs to 4A DC Washington area The mixed-humid. In the report, U-factor, SHGC, VT are analyzed.

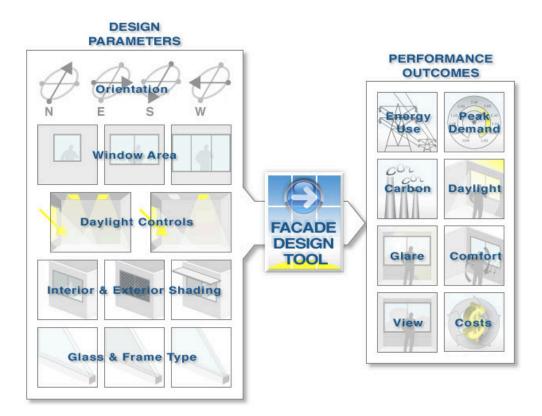


Figure 30

The following factos are considered and used in the calculation in the Facade Design Tool:

U-factor

U-factor is the rate of heat transfer through windows per unit area and per unit temperature difference. The typical units are BTU/hr-ft2-F. The energy lost or gain equals:

```
U factor x Area (ft2) x (T inside-T outside)
```

Solar Heat Gain Coefficient

When sunlight hits the windows, some of it goes right through, and some is reflected back and some is absorbed, heating up the window itself. SHGC represents the fraction of solar energy that strikes the window that ends up warming the house.

VT

VT is the visual transmittance which represent the fraction of visible light that comes through the window. The greater the VT, the better the potential for daylighting. Usually a reduction in SHGC come with a reduction in VT.

An analysis is accomplished by Facade Design Tool to demonstrate the environmental impacts of various design scenarios to allow earlier decisions in design process. The data tells the annual energy use per square goot of heating, cooling, fans and lights for several scenarios in DC area with 30% window area and unshaded glazing types, also the electric peak demand, annual carbon emissions, annual daylights, thermal comfort and so on.

• See APPENDIX C FACADE DESIGN ENERGY ANALYSIS.

Electrical Breadth

Electrochromic glass which can reduce visual glare and cut cooling and heating costs it can fit well in energy efficient building. It can reduce heating cooling usage by 25% and peak load (morning and early evening) by 30%.

3.8 : Hospitals and Medical Facilities

1999	Total Square Footage	Energy Use	Energy Intensity
	<u>(billion)</u>	(quadrillion Btus)	(thousand Btus/SF)
	1.87	0.43	229.0
2003	1.91	0.48	249.3
	2.15	0.45	210.1
2010	2.24	0.48	213.7
2015	2.45		208.2
2015	2.43	0.54	200.2
2020	2.66		202.9
2025	2.88		194.8
2025	2.88	0.56	194.6
2030	3.09	0.59	190.9
2035	3.30	0.61	184.6

3.8.2 Inpatient Medical Facilities Square Footage, Delivered Energy, Energy Intensity, Selected Years

Figure 31

3.8.4 Energy Benchmarks for Newly Constructed Hospitals, by Selected City and End-Use (thousand Btu per square foot)

	IECC Climate Zone	Heating	Cooling	Water Heating	Ventilation
Miami	1A	40.6	67.5	1.8	17.4
Houston	2A	47.2	68.1	2.1	17.1
Phoenix	2B	42.5	62.3	1.9	17.4
Atlanta	3A	48.6	62.5	2.5	16.4
Los Angeles	3B	47.6	55.5	2.4	15.7
Las Vegas	3B	41.8	52.0	2.2	16.2
San Francisco	3C	56.6	51.5	2.7	16.1
Baltimore	4A	55.4	60.5	2.7	16.1
Albuquerque	4B	37.9	41.7	2.7	15.5
Seattle	4C	55.1	49.7	2.9	15.2
Chicago	5A	58.2	51.0	3.0	15.6
Boulder	5B	42.3	39.3	3.0	15.1
Minneapolis	6A	62.8	45.5	3.2	15.1
Helena	6B	50.8	36.6	3.2	14.7
Duluth	7	67.0	38.5	3.5	14.7
Fairbanks	8	89.1	25.2	3.9	13.5

Note(s): Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 241,263 square feet and 5 floors. Benchmark interior lighting energy = 16.36 thousand Btu/SF. Interior equipment energy consumption = 15.15 thousand Btu/SF. Ventilation includes energy used by fans and heat rejection systems.

Figure 32

Estimation is made based on the data from the figures above. Data from Baltimore area is selected where the SPT is closed to.These data are specified for new constructed hospital at well.

Heating 55.4 kBTU x236,000 ft2 =13,074,400 kBTU Cooling 60.5 kBTU x236,000 ft2 =14,278,000 kBTU Water Heating 2.7 kBTU x236,000 ft2 =637,200 kBTU Ventilation 16.1 kBTU x236,000 ft2 =3,799,600 kBTU

Total energy=13,074,400 kBTU+14,278,000 kBTU+637,200 kBTU+3,799,600 kBTU = 31,789,200 kBTU

Total energy savings= 31,789,200 kBTU x 25%= 7,947,300 kBTU

Electricity price with appliance efficiency 100% =\$ 35.16 per million BTU

Total cost savings=7.9473 x 1000 x 35.16= \$ 279,427.068

After several research, the products from Soladigm Inc. is selected for the alternative window materials for the South Patient Tower. Soladigm is a developer of next-generation green building solutions designed to improve energy efficiency. The high energy-efficient dynamic glasses can switch from clear to tinted on demand, resulting in significant cost savings, environmental benefits, and quality of life enhancements. The approximate price is \$20 per ft2.

Total Cost= \$20/ ft2 x 22450 ft2 = \$449,000

Since the price of the window materials and installation labor cost information is not provided by neither Inova hospital nor the Turner Construction, the comparison of the price and cost savings can not be accomplished. Therefore, dynimic glasses is believed to be the most efficient and proper window materials for South Patient Tower based on the researches done so far.

9.0 Analysis#4 Integrated Project Delivery (IPD)

9.1 Problem Identification

Integrated project delivery is a collaborative project delivery approach that utilizes the talents and insights of all the project participants through all phases of design and construction process.

All the activities mentioned above are seen as the biggest risks for the South Patient Tower project. Every step is crucial in order to meet the schedule completion date. If these schedule milestones are not met, then Tuner Construction will have to pay liquidated damages for each specific milestone. One of the biggest risks to the project completion date is the slight interruption with the Earthquake that occurred on August 23, 2011 and a Hurricane that we had to prepare for on August 27, 2007. As a result the crane was shut down the day after the Earthquake for a re-inspection and to repair water damage on the crane motors after the hurricane.

Also, There were coordination issues during the construction of first and second floor for the curved wall on south side of the South Patient Tower. The two curves did not match with each other due to the drawing on the architecture and engineering drawings. The schedule was delayed to cut and reshape the first floor. As shown in the figures below:

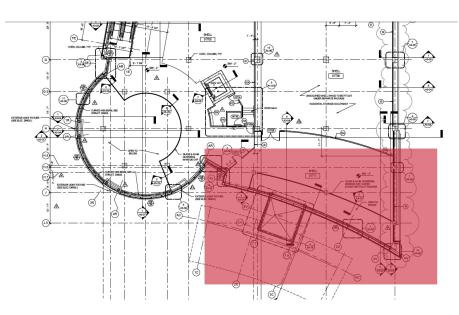


Figure 33

Figure 34

Exterior Wall: The installation of the Light Gage Metal framing on the East elevation started this month and was stopped as a result of a redesign that will coordinate better with the Women's Hospital Construction. Currently the revised Engineered drawings are being prepared by the framing subcontractor. This work was started in September.

Figure 35

Due to the complexity of the MEP system of the South Patient Tower, Turner has spent more than one year to implement BIM to coordinated the MEP system after got all the files from the subcontractors to make sure that everything fit in the tight ceiling that the SPT has. Meetings are set up at least twice a week to figure out how everything will be routed in these tight conditions. Therefore, the availability of the personnel from each contract group. At the mean time, Turner Construction can not make earlier contribution to the design phase and coordination process.

Figure 36

9.2 Research Goals (steps to achieve the analysis/research)

- Technology has played an important role in the IPD. Traditional IT solution may not be conducive to the collaborative work among the teams, which means the exploration on new collaborative software is extremely urgent.
- Study the Integrated Project Delivery Guide from The American Institute of Architects.
- Understand the issues that must be addressed in an IPD document

9.3 Potential Solutions

Integrated project delivery is changing the design world. It can minimize some risks, but may increase the exposure to other risks at the same time. The utilization of Integrated Project Delivery(IPD) will provide the opportunity for the early contributions of knowledge and expertises, which allows all the team members to realize their highest potentials to optimize project results, increase

value to the owner, reduce waste, and maximize efficiency through all design, fabrication, construction and pos-construction process.

9.4 Expected Outcome

IPD method brings all participants such as Inova Fairfax Hospital, Turner Construction, and all other subcontractors together early with collaborative incentives to maximize the benefit of the project. The goal is to eliminates a great amount of waste in the design phase, and also allows data sharing directly between the design and construction team to eliminate the large barrier and increased productivity in construction at the same time. Issues need to be considered:


- control the risks of sharing information
- compare the legal underpinnings of traditional design and construction delivery models to IPD.
- identify the attributes of contracts for IPD, and the professional liability insurance issues unique to IPD.

9.3 Study on Integrated Project Delivery A Guide(AIA)

AIA DOCUMENTS

American Institute of Architects published 6 new documents:

- 1. Two are contract documents or the Standard form single purpose entity agreement for IPD.
- 2. Third document.
- 3. Two of the new AIA documents are standard agreements for use in designbuild practices. They establish relationships between contractors and subcontractors and between architects and their consultants. They outline rights and responsibilities of the parties and scope of work to be performed. They also outline rights and responsibilities of the parties and scope of work to be performed, and they address various key issues such as shared risk, dispute resolution, communications, and compensation.
- 4. Standard form of architect's services on-site project representation. This scope of services document outlines responsibilities of and compensation for architect's representatives on job sites.

ltems	Traditional Project Delivery	Integrated Project Delivery
Team	Fragmented, "minimum-necessary" basis, strongly hierarchical	Mutual Respect and Trust
Compensation/ reward	Individually pursued	Mutual Benefit and Reward
Risk	Individually managed, transferred to the greatest extent possible	Collaborative Innovation and Decision
Process	linear, segregated,information hoarded.	Early Involvement of Key Participants, goal Definition, Intensified Planning
Communication	Paper based,2 dimensional	Digital based, BIM, Open Communication

SENIOR THESIS FINAL REPORT

9.4 Proposal: Multi Prime Contracts

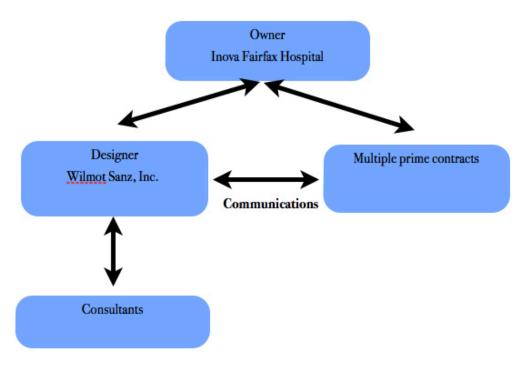
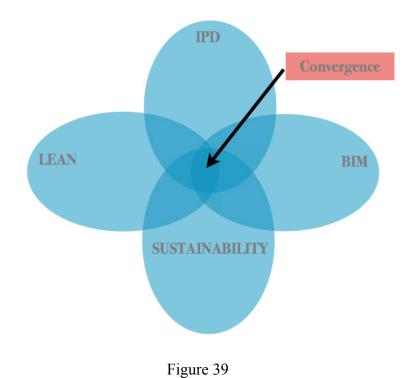


Figure 39

South Patient Tower is Design-bid-build method of project procurement. Barton Malow was the previous General Contrator for the Inova Fairfax Hospital South Patient Tower. They have been working on the pre-construction work for almost one year. Therefore, Barton Malow could not make it at the bidding price. The South Patient Tower Project was re-competed. Turner Construction won the work finally at the price of \$76 million. The estimate profit and overhead total is about 12-16% percent of the project cost. This is a negotiated lump sum contract. Turner construction acts as the general contractor of the project along with the architect and engineering firms to work on the design and construction work.

The Inova Fairfax Hospital together with Turner has also evaluated and went through all the proposed design changes and value engineering concepts.


Some of them are accepted and some are rejected. Some of them are still pending. Turner Construction's value engineers mainly focused on:

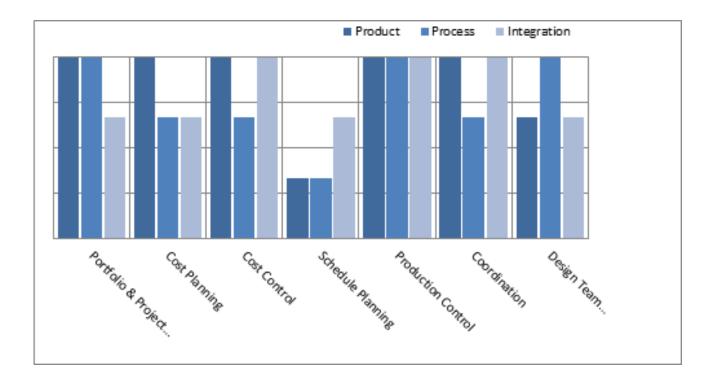
- Life cycle savings in long terms under the risk of resulting a higher initial cost
- Optimizing Constructability
- Materials Substitutions

From the Division of Capital Asset Management of the Commonwealth of Massachusetts study case in the IPD for Public and Private Owners, many key provisions can be utilized as references by Inova and Turner Construction. Inova Fairfax act as one entity, the Wilmots Sanz Inc. and engineering firms as the second, and the Turner Construction company as the third. They have together build the primary participants and key supporting participant. Followings are the suggestions and potential methods to help improve the team work and therefore accelerate the schedule and the gain the productivity of the project:

- Frequent Meetings
- BIM(Sharing sensitive, proprietary or confidential information)
- Project cost :owner's interests in lower price, designer and contractor may have have a financial incentive to seek a higher target price. the conflict is managed through careful participant selection, open book estimating, proper use of independent consultants.
- Schedule: one of the main benefits of IPD is the reduction of construction time due to the extensive planning and changes to project processes. Early ordering of materials by key supporting participant trade contractors to coordinate with the development of the design reduce the time from the completion of design to beginning of active work on site.
- Understand how economic and market factors are driving IPD adoption.
- Apply successes from IPD projects across the nation.
- Master the key components of IPD contracts and risk management.
- Use technology and teaming techniques to build collaborative success.
- Select and build strong IPD project teams.
- Forecast the future of the industry, and how broad market factors such as BIM, Vertical Integration and Sustainability are all driving IPD process

The most ideal and efficient way to achieve IPD is to combine all the new technologies such as BIM, Lean, Sustainability together to optimize the construction process

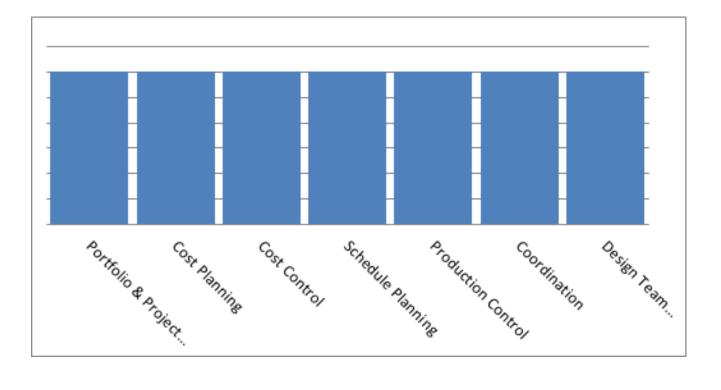
Risks


- Trying something new and untested, issues are still new.
- Building without a GMP
- Surrendering command and control
- Owner is taking some of the risks back
- May not get what we are expecting after a huge investment of time
- It is difficult to measure the benefit

APPENDIX A BIM SCORE REPORT

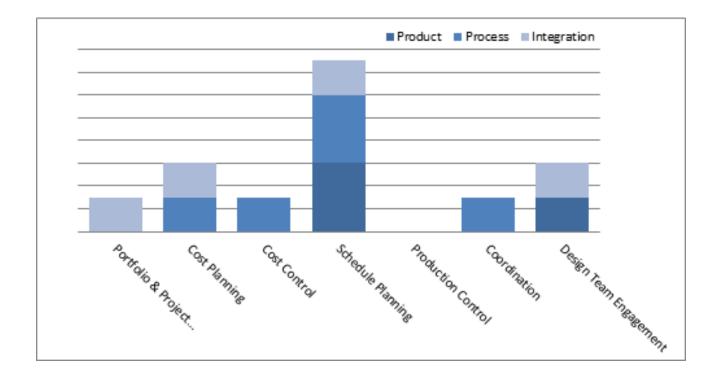
1 81 *out of 100*

Scores


	Product	Process	Integration
Portfolio & Project Management	3	3	2
Cost Planning	3	2	2
Cost Control	3	2	3
Schedule Planning	1	1	2
Production Control	3	3	3
Coordination	3	2	3
Design Team Engagement	2	3	2

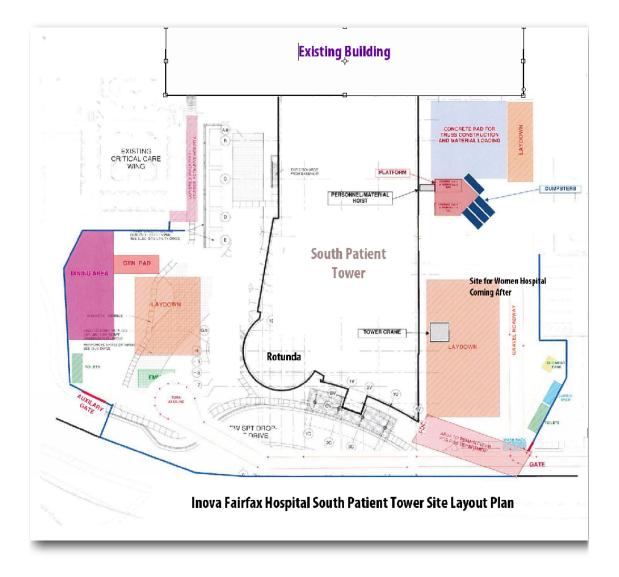
JIANHONG QIU

Priorities


Category	Priority Level	
Portfolio & Project Mgmt	3	Scoring Standards:
Cost Planning	3	0/blank = No Priority
Cost Control	3	1 = Low Priority (or consider blank)
Schedule Planning	3	2 = Medium Priority
Production Control	3	3 = High Priority
Coordination	3	
Design Team Engagement	3	

3 Review areas for improvement

Improvement Opportunities


	Product	Process	Integration
Portfolio & Project Management			3
Cost Planning		3	3
Cost Control		3	
Schedule Planning	6	6	3
Production Control			
Coordination		3	
Design Team Engagement	3		3

INOVA FAIRFAX HOSPIT		<u>. sc</u>	DUT	HF	PATI	EN	тт	ow	ER
	High Priority	0	0	Ø	Ø	0	۲	0	
sign a rating for each of the categories:	Medium Priority	۲	¢	0	0	Q	0	0	
ional category in your company. Please as	Low Priority	0	0	0	0	0	0	•	
Before using the BIM Scorecard, we need to ask the importance of each functional category in your company. Please assign a rating for each of the categories:	No Priority	0	0	0	0	0	0	0	
Before using the BIM Scorecard, v		Portfolio & Project Mgmt	Cost Planning	Cost Control	Schedule Planning	Production Control	Coordination	Design Team Engagement	

April 3rd, 2012

APPENDIX B SITE PLAN

APPENDIX C FACADE DESIGN ENERGY ANALYSIS

Sum	imary	Ener	ду	Pe	eak		Carbon	Daylight		Glare	Comfort	
The	e Building		Gla	zing Syste	m		Light & Sha	de		Annual Ene	rgy Use (kBtu/sf-yr)	
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Controls	Shades	kBtu/sf-yr			
30	2' Overhang	E	2	0.24	0.29	0.52	Continuous	None	84.10			
30	None	E	2	0.24	0.29	0.52	Continuous	None	87.27			
30	2' Overhang	E	2	0.24	0.29	0.52	Continuous	IntVB	99.33			
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	None	101.29			
30	2' Overhang	E	2	0.24	0.29	0.52	None	IntVB	104.23			
30	2' Overhang	E	2	0.24	0.29	0.52	None	None	104.25			
30	None	E	2	0.24	0.29	0.52	Continuous	IntVB	105.04			
30	None	С	2	0.47	0.5	0.48	Continuous	None	108.21			
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	IntVB	109.60			
30	None	E	2	0.24	0.29	0.52	None	IntVB	110.54			
30	None	E	2	0.24	0.29	0.52	None	None	111.46			
30	2' Overhang	С	2	0.47	0.5	0.48	None	IntVB	114.11			
30	None	С	2	0.47	0.5	0.48	Continuous	IntVB	116.93			
30	2' Overhang	С	2	0.47	0.5	0.48	None	None	120.41			
30	None	С	2	0.47	0.5	0.48	None	IntVB	122.05			

East Facade

Pages (25 results per page): 1

None

131.45

0

1

200

300

400

500

100

None

Total Matching F	Records: 16
------------------	-------------

Sum	mary	Energ	У	Pea	ik		Carbon	Daylight		Glare		Comfo	ort	
Th	e Building		Gla	zing Syste	m		Light & Sha	de			Pea	ık (W/sf)		
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Controls	Shades	W/sf					
30	2' Overhang	E	2	0.24	0.29	0.52	Continuous	None	4.47	_				
30	None	E	2	0.24	0.29	0.52	Continuous	None	4.71	-				
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	None	5.14					
30	2' Overhang	E	2	0.24	0.29	0.52	Continuous	IntVB	5.21					
30	2' Overhang	E	2	0.24	0.29	0.52	None	None	5.45					
30	2' Overhang	E	2	0.24	0.29	0.52	None	IntVB	5.49					
30	None	E	2	0.24	0.29	0.52	Continuous	IntVB	5.54					
30	None	С	2	0.47	0.5	0.48	Continuous	None	5.66					
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	IntVB	5.71					
30	None	E	2	0.24	0.29	0.52	None	None	5.80					
30	None	E	2	0.24	0.29	0.52	None	IntVB	5.88					
30	2' Overhang	С	2	0.47	0.5	0.48	None	IntVB	5.98					
30	None	С	2	0.47	0.5	0.48	Continuous	IntVB	6.17					
30	2' Overhang	С	2	0.47	0.5	0.48	None	None	6.21					
30	None	С	2	0.47	0.5	0.48	None	IntVB	6.49					
30	None	C	2	0.47	0.5	0.48	None	None	6.75					
										0	5	10	15	20
							ges (25 results per page tal Matching Records:	-						

С

30

None

2

0.47

0.5 0.48

INOVA FAIRFAX HOSPITAL SOUTH PATIENT TOWER April 3rd, 2012

Sum	mary	Energ	У	Pea	k		Carbon	Daylight		Glare	Comf	ort	
Th	e Building		Gla	zing Syste	m		Light & Sh	ade		Ci	arbon (lbs/sf-y	rr)	
wwR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Controls	Shades	lbs/sf				
30	2' Overhang	E	2	0.24	0.29	0.52	Continuous	None	9.15				
30	None	E	2	0.24	0.29	0.52	Continuous	None	9.49				
30	2' Overhang	E	2	0.24	0.29	0.52	Continuous	IntVB	10.79				
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	None	11.03				
30	2' Overhang	E	2	0.24	0.29	0.52	None	IntVB	11.32				
30	2' Overhang	E	2	0.24	0.29	0.52	None	None	11.32				
30	None	E	2	0.24	0.29	0.52	Continuous	IntVB	11.40				
30	None	С	2	0.47	0.5	0.48	Continuous	None	11.77				
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	IntVB	11.94				
30	None	E	2	0.24	0.29	0.52	None	IntVB	11.99				
30	None	E	2	0.24	0.29	0.52	None	None	12.09				
30	2' Overhang	С	2	0.47	0.5	0.48	None	IntVB	12.42				
30	None	С	2	0.47	0.5	0.48	Continuous	IntVB	12.72				
30	2' Overhang	С	2	0.47	0.5	0.48	None	None	13.09				
30	None	С	2	0.47	0.5	0.48	None	IntVB	13.27				
30	None	С	2	0.47	0.5	0.48	None	None	14.28				
										0 25	50	75	

Total Matching Records: 16

Summary		Energ	У	Pea	k		Carbon	Daylight		Glare	Comfort	
The Bui	Iding		Gla	zing Syste	m		Light &	Shade		Glar	re (glare index)	
	uilding ojections	Glass	Panes	U-factor	SHGC	νт	Lighting Cont	ols Shades	Index			
30 2' 0	Overhang	E	2	0.24	0.29	0.52	None	IntVB	0.00			
30	None	C	2	0.47	0.5	0.48	Continuous	IntVB	0.00			
30 2' 0	Overhang	С	2	0.47	0.5	0.48	Continuous	None	0.00			
30	None	E	2	0.24	0.29	0.52	Continuous	IntVB	0.00			
30	None	С	2	0.47	0.5	0.48	None	None	0.00			
30 2' 0	Overhang	Е	2	0.24	0.29	0.52	Continuous	None	0.00			
30 2' 0	Overhang	С	2	0.47	0.5	0.48	None	None	0.00			
30	None	Е	2	0.24	0.29	0.52	None	None	0.00			
30 2' 0	Overhang	С	2	0.47	0.5	0.48	Continuous	IntVB	0.00			
30	None	С	2	0.47	0.5	0.48	None	IntVB	0.00			
30 2' 0	Overhang	Е	2	0.24	0.29	0.52	Continuous	IntVB	0.00			
30	None	Е	2	0.24	0.29	0.52	None	IntVB	0.00			
30 2' 0	Overhang	Е	2	0.24	0.29	0.52	None	None	0.00			
30	None	С	2	0.47	0.5	0.48	Continuous	None	0.00			
30 2' 0	Overhang	С	2	0.47	0.5	0.48	None	IntVB	0.00			
30	None	Е	2	0.24	0.29	0.52	Continuous	None	0.00			
										0	5 10	1

INOVA FAIRFAX HOSPITAL SOUTH PATIENT TOWER April 3rd, 2012

Sum	mary	Energ	у	Pea	k		Carbon	Daylight		Glare		Con	nfort		
The	e Building		Gla	zing Syste	m		Light & Sha	ade		Di	aylight (footcar	ndles)		
wwR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Controls	Shades	fc						
30	None	Е	2	0.24	0.29	0.52	None	None	39.65						
30	None	Е	2	0.24	0.29	0.52	Continuous	None	39.65						
30	None	С	2	0.47	0.5	0.48	None	None	36.90						_
30	None	С	2	0.47	0.5	0.48	Continuous	None	36.90						
30	2' Overhang	Е	2	0.24	0.29	0.52	Continuous	None	28.79						
30	2' Overhang	E	2	0.24	0.29	0.52	None	None	28.79						
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	None	26.79						
30	2' Overhang	С	2	0.47	0.5	0.48	None	None	26.79						
30	None	E	2	0.24	0.29	0.52	Continuous	IntVB	2.73						
30	None	Е	2	0.24	0.29	0.52	None	IntVB	2.73						
30	None	С	2	0.47	0.5	0.48	Continuous	IntVB	2.61						
30	None	С	2	0.47	0.5	0.48	None	IntVB	2.61						
30	2' Overhang	E	2	0.24	0.29	0.52	None	IntVB	2.47						
30	2' Overhang	E	2	0.24	0.29	0.52	Continuous	IntVB	2.47						
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	IntVB	2.36						
30	2' Overhang	С	2	0.47	0.5	0.48	None	IntVB	2.36						
										0 50	100	150	200	250	1

Total Matching Records: 16

Sum	mary	Energ	IY	Pea	k		Carbon	Daylight		Glare	Comfo	rt	
Th	e Building		Gla	zing Syste	m		Light &	Shade	Th	ermal Comfor	t (percent peo	ple satisf	fied)
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Contr	ols Shades	PPS				
30	None	E	2	0.24	0.29	0.52	None	IntVB	89.77		1		
30	None	E	2	0.24	0.29	0.52	None	None	89.71		1		
30	None	Е	2	0.24	0.29	0.52	Continuous	IntVB	89.67				
30	2' Overhang	Е	2	0.24	0.29	0.52	None	IntVB	89.56				
30	2' Overhang	Е	2	0.24	0.29	0.52	Continuous	IntVB	89.45		1		
30	2' Overhang	Е	2	0.24	0.29	0.52	None	None	89.44				
30	None	E	2	0.24	0.29	0.52	Continuous	None	89.17				
30	2' Overhang	Е	2	0.24	0.29	0.52	Continuous	None	88.99				
30	None	С	2	0.47	0.5	0.48	None	None	87.86				
30	None	С	2	0.47	0.5	0.48	None	IntVB	87.55				
30	None	С	2	0.47	0.5	0.48	Continuous	IntVB	87.42				
30	2' Overhang	С	2	0.47	0.5	0.48	None	None	87.37		1		
30	None	С	2	0.47	0.5	0.48	Continuous	None	87.32		1		
30	2' Overhang	С	2	0.47	0.5	0.48	None	IntVB	87.16		1		
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	IntVB	87.04		1		
30	2' Overhang	С	2	0.47	0.5	0.48	Continuous	None	86.90		1		
										0 25	50	75	1

Total Matching Records: 16

m Light & Shade Performan	
U-factor SHGC VT Lighting Controls Shades Exected as a state of the st	Glare comf
SHGC, argon 0.24 0.29 0.52 Continuous None 🔵 👄 👄	•
SHGC, argon 0.24 0.29 0.52 Continuous None 😐 👄 👄	•
SHGC, argon 0.24 0.29 0.52 Continuous IntVB 😐 👄 👄	•
SHGC 0.47 0.5 0.48 Continuous None 😐 👄 👄	
SHGC, argon 0.24 0.29 0.52 None IntVB 🤍 👄 👄 👄	
SHGC, argon 0.24 0.29 0.52 None None 😐 👄 👄	•
SHGC, argon 0.24 0.29 0.52 Continuous IntVB 😐 👄 👄	•
SHGC 0.47 0.5 0.48 Continuous None 🔍 🔍 👄	
SHGC 0.47 0.5 0.48 Continuous IntVB 🥥 🍚 👄	•
SHGC, argon 0.24 0.29 0.52 None IntVB 🥥 🕘 🔴	•
SHGC, argon 0.24 0.29 0.52 None None 🥥 🥥 🥥	•
SHGC 0.47 0.5 0.48 None IntVB 🕘 🕘 👄	•
SHGC 0.47 0.5 0.48 Continuous IntVB 🔍 🔍 💭	•
SHGC 0.47 0.5 0.48 None None 🕘 🔍 💭	•
SHGC 0.47 0.5 0.48 None IntVB 😐 😐 😐	•
SHGC 0.47 0.5 0.48 None None 😐 😐 👄	•
worst 🤤 👝 🧃	est

cenario	Zone Orientation	WWR	Building Projections			Glass		Lighting Co	ntrols		Shades
1	South 🛟	30% 🛟	None	E: Doul	ble tint low-	E, mod VT, mo	d SHGC 🛟	No Controls	\$	No Shade	s
2	West 🛟	30% 🛟	None	E: Doul	ble tint low-	E, mod VT, mo	d SHGC 🛟	No Controls	\$	No Shade	5
3	East 🛟	30% 🛟	None	E: Doul	ble tint low-	E, mod VT, mo	d SHGC 🛟	No Controls	\$	No Shade	s
4	North 🛟	- 🛟	- :	-			\$	-	\$	-	
5	North 🛟	- 🛟	- :	-			\$	(-	\$	-	
Scen	ario	Annual Eng	ergy (lower is better)		kBty/sf-yr	Scenario	Pea	k Demand (lowe	r is hetter	`	W/sf
1			ngy (lower is better)		97.40	1	100			, 	5.27
2		•		_	111.46	2			<u> </u>		5.80
3					113.23	3			1		5.85
4					0.00	4 [0.00
5					0.00	5 [0.00
	0 1	00 200	300 400	500		ō	5	10 15	20 2	25 30	
Scen	ario	Carbon	(lower is better)		lbs/sf-yr	Scenario	Dayligh	t Illuminance (hi	gher is be	etter)	FC
1					10.55	1					48.18
2					12.09	2					39.65
					40.00	-					
3					12.28	3					42.05
3 4					0.00	3 [42.05 0.00
						4 [5 [
4		10	20 30	40	0.00	4 [50	100	150	200	0.00
4			20 30		0.00	4 [5 [100			0.00
4 5					0.00 0.00	4 [5 [0					0.00 0.00
4 5 Scen	ario				0.00 0.00 PPS	4 [5 [0 <u>Scenario</u>					0.00 0.00 Index
4 5 <u>Scen</u> 1	ario				0.00 0.00 PPS 90.97	4 [5 [0 <u>Scenario</u> 1 [0.00 0.00 Index 0.00
4 5 <u>Scen</u> 1 2	ario				0.00 0.00 PPS 90.97 89.71	4 [5 [0 <u>Scenario</u> 1 [2 [0.00 0.00 Index 0.00 0.00

SENIOR THESIS FINAL REPORT

South Facade

Su	ummary		Energy	у	Peak	Carbon		Daylig	ht	Glare		Comfort					
The	e Building				Glazing S	Jystem				Light & Sha	de		Р	erfoi	rman	се	'
WWR	Building Projections	Glass	Panes		Features		U-factor	SHGC	νт	Lighting Controls	Shades	Energ	Peak	carbon	Daviigh	Glare	comfort
30	2' Overhang	Н	2		Lowe-E, high VT, low S	HGC, argon	0.24	0.27	0.64	None	None	•	-	-	0		-
30	2' Overhang	Е	2	Low-E	tint, moderate VT, mode	erate SHGC, argon	0.24	0.29	0.52	None	None	•	-	•	•	•	-
30	2' Overhang	С	2		Tint, moderate VT, mod	erate SHGC	0.47	0.5	0.48	None	None	•	-	•	•	•	-
30	2' Overhang	T	3	Lc	ow-E, high VT, moderate	SHGC, argon	0.13	0.32	0.6	None	None	•	•	•	•	•	•
30	2' Overhang	G	2	Lc	ow-E, high VT, moderate	SHGC, argon	0.24	0.38	0.7	None	None	•	-	•	•	•	•
												e worst			best) gt	

Sum	imary	ary Energy			eak		Carbon	D	Daylight		Glare	C	Comfort		
The	e Building		Gla	zing Syste	m		Light &	Shade	I		Annual Ene	rgy Use	(kBtu/sf-y	/r)	
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Contr	rols	Shades	kBtu/sf-yr					
30	2' Overhang	Н	2	0.24	0.27	0.64	None		None	90.23					
30	2' Overhang	Е	2	0.24	0.29	0.52	None		None	90.33					
30	2' Overhang	С	2	0.47	0.5	0.48	None		None	92.94					
30	2' Overhang	1	3	0.13	0.32	0.6	None		None	93.50					
30	2' Overhang	G	2	0.24	0.38	0.7	None		None	94.02					
											0 100	200	300	400	500

Sum	mary	Energ	У	Pea	k		Carbon	Da	aylight		Glare		Comfor	t	
The	e Building		Gla	zing Syste	m		Light	& Shad	е			Peak	(W/sf)		
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Co	ntrols	Shades	W/sf					
30	2' Overhang	Н	2	0.24	0.27	0.64	None		None	4.88					
30	2' Overhang	E	2	0.24	0.29	0.52	None		None	4.90					
30	2' Overhang	1	3	0.13	0.32	0.6	None		None	4.93					
30	2' Overhang	С	2	0.47	0.5	0.48	None		None	4.94					
30	2' Overhang	G	2	0.24	0.38	0.7	None		None	4.97					
											0 9	5	10	15	20

Sum	mary	Ener	gу	Pea	k		Carbon	Da	aylight		Glare	С	omfort		
Th	e Building		Gla	zing Syste	m		Ligh	t & Shac	le		C	arbon (lbs	s/sf-yr)		
WWR	Building Projection		Panes	U-factor	SHGC	νт	Lighting Co	ontrols	Shades	lbs/sf					
30	2' Overhan	g H	2	0.24	0.27	0.64	None		None	9.78					
30	2' Overhan	g	2	0.24	0.29	0.52	None		None	9.79					
30	2' Overhan	g	2	0.47	0.5	0.48	None		None	10.09					
30	2' Overhan	g 📘	3	0.13	0.32	0.6	None		None	10.13					
30	2' Overhan	g G	2	0.24	0.38	0.7	None		None	10.19					
											0 25	; 5	0	75	100

Sum	mary	Energ	y	Pea	k		Carbon	Daylight		Glare		Com	fort		
The	e Building		Gla	zing Syste	m		Light & S	hade		Day	ylight (1	footcan	dles)		
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Control	s Shades	fc						
30	2' Overhang	G	2	0.24	0.38	0.7	None	None	46.08						
30	2' Overhang	H	2	0.24	0.27	0.64	None	None	41.83						
30	2' Overhang		3	0.13	0.32	0.6	None	None	39.01						
30	2' Overhang	E	2	0.24	0.29	0.52	None	None	33.37						
30	2' Overhang	C	2	0.47	0.5	0.48	None	None	31.06						
										0 50	100	150	200	250	300

Sum	mary	Energ	У	Peal	k		Carbon	Da	aylight		Glare	Comfo	ort	
Th	e Building		Gla	zing Syste	m		Light	t & Shad	е	Tł	nermal Comfo	ort (percent pe	ople sati	sfied)
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Cor	ntrols	Shades	PPS				
30	2' Overhang	1	3	0.13	0.32	0.6	None		None	91.48				
30	2' Overhang	G	2	0.24	0.38	0.7	None		None	91.12				
30	2' Overhang	Н	2	0.24	0.27	0.64	None		None	90.84				
30	2' Overhang	E	2	0.24	0.29	0.52	None		None	90.77				
30	2' Overhang	С	2	0.47	0.5	0.48	None		None	89.35				
											0 25	50	75	100

JIANHONG QIU

West Facade

Su	immary		Energy	y	Peak	Carbon		Dayligi	ht	Glare		С	omfo	ort			
The	e Building				Glazing S	lystem				Light & Sha	de		Р	erfor	rman	се	
WWR	Building Projections	Glass	Panes		Features		U-factor	SHGC	νт	Lighting Controls	Shades	Enero	Peak	carbon	Davligh	Glare	comfort
30	None	D	2		Reflective, low VT, lo	w SHGC	0.44	0.18	0.1	None	None	-	-	•	۲	0	-
30	None	J	3		Low-E, low VT, low SH	IGC, argon	0.12	0.21	0.34	None	None	-	۲	•		•	-
30	None	F	2		Low-E, low VT, low SH	IGC, argon	0.25	0.24	0.37	None	None	-	-	-		9	-
30	None	Е	2	Low-E	tint, moderate VT, mode	erate SHGC, argon	0.24	0.29	0.52	None	None	-	-	-	•	•	-
30	None	С	2	٦	Tint, moderate VT, mod	erate SHGC	0.47	0.5	0.48	None	None	-	-	-	•	9	-
													e worst	•	0) 🥮 best) st

Sum	nmary	Ener	gy	Pe	eak		Carbon	Daylight		Glare	Com	ifort	
Th	e Building		Gla	zing Syste	m		Light &	Shade		Annual Ene	rgy Use (kl	3tu/sf-yr)	
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Contro	ols Shades	kBtu/sf-yı	r			
30	None	D	2	0.44	0.18	0.1	None	None	99.29				
30	None	J	3	0.12	0.21	0.34	None	None	101.29				
30	None	F	2	0.25	0.24	0.37	None	None	105.12				
30	None	E	2	0.24	0.29	0.52	None	None	111.46				
30	None	C	2	0.47	0.5	0.48	None	None	131.45				
										0 100	200 3	300 40	00 500

Su	mmary	Energ	IУ	Pea	k		Carbon	Da	aylight		Glare		Comfort	t	
Т	he Building		Gla	zing Syste	m		Light	& Shad	le			Peak (W/sf)		
WWF	Building Projection		Panes	U-factor	SHGC	νт	Lighting Cor	ntrols	Shades	W/sf					
30	None	J	3	0.12	0.21	0.34	None		None	5.37			Ι		
30	None	D	2	0.44	0.18	0.1	None		None	5.40			Τ		
30	None	F	2	0.25	0.24	0.37	None		None	5.58			Τ		
30	None	E	2	0.24	0.29	0.52	None		None	5.80			T		
30	None	C	2	0.47	0.5	0.48	None		None	6.75			I		
											0 5		10	15	20

Sum	mary	Energ	у	Pea	k		Carbon	Da	aylight		Glare		Comfort		
Th	e Building		Gla	zing Syste	m		Ligh	t & Shac	le			Carbon (lbs/sf-yr)		
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Co	ontrols	Shades	lbs/sf					
30	None	D	2	0.44	0.18	0.1	None		None	10.84					
30	None	J	3	0.12	0.21	0.34	None		None	10.99					
30	None	F	2	0.25	0.24	0.37	None		None	11.42					
30	None	Е	2	0.24	0.29	0.52	None		None	12.09					
30	None	С	2	0.47	0.5	0.48	None		None	14.28					
											0	25	50	75	100

Sum	mary	Energ	у	Pea	k		Carbon	Da	aylight		Glare	•		Com	fort		
Th	e Building		Gla	zing Syste	m		Light	t & Shad	e			Dayl	ight (f	ootcan	dles)		
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Co	ntrols	Shades	fc							
30	None	E	2	0.24	0.29	0.52	None		None	39.65							
30	None	С	2	0.47	0.5	0.48	None		None	36.90							
30	None	F	2	0.25	0.24	0.37	None		None	28.50							
30	None	J	3	0.12	0.21	0.34	None		None	25.92							
30	None	D	2	0.44	0.18	0.1	None		None	7.50							
											0 5	50	100	150	200	250	300

Sum	nmary	Energ	y	Peal	k		Carbon	D	aylight		Glare	· · · ·	Comfort	
Th	e Building		Gla	azing Syste	m	1	Ligh	nt & Shad	de	T	nermal Com	ifort (perc	ent people s	atisfied)
WWR	Building Projections	Glass	Panes	U-factor	SHGC	νт	Lighting Co	ontrols	Shades	PPS				
30	None	J	3	0.12	0.21	0.34	None	•	None	90.34				
30	None	E	2	0.24	0.29	0.52	None	•	None	89.71				
30	None	F	2	0.25	0.24	0.37	None	•	None	89.29				
30	None	C	2	0.47	0.5	0.48	None		None	87.86				
30	None	D	2	0.44	0.18	0.1	None	•	None	85.81			i and i de la constanti de la c	
											0 25	25 5	50 75	5 100

JIANHONG QIU

APPENDIX D LEED SCORE CARD

LEED-NC Version 2009 PROJECT CHECKLIST **INOVA FAIRFAX HOSPITAL SOUTH PATIENT TOWER** FALLS CHURCH VIRGINIA

No ? Yes 13

0

0 Sustainable Sites

Y			Prereq 1	Construction Activity Pollution Prevention	Required
X	1		Credit 1	Site Selection	1
X	3		Credit 2	Development Density & Community Connectivity	5
		X	Credit 3	Brownfield Redevelopment	1
X			Credit 4.1	Alternative Transportation, Public Transportation Acces	6
		Χ	Credit 4.2	Alternative Transportation, Bicycle Storage & Changing	1
X	3		Credit 4.3	Alternative Transportation, Low-Emitting and Fuel-Effic	3
X	2		Credit 4.4	Alternative Transportation, Parking Capacity	2
		X	Credit 5.1	Site Development, Protect of Restore Habitat	1
		X	Credit 5.2	Site Development, Maximize Open Space	1
X	1		Credit 6.1	Stormwater Design, Quantity Control	1
X	1		Credit 6.2	Stormwater Design, Quality Control	1
		X	Credit 7.1	Heat Island Effect, Non-Roof	1
X	1		Credit 7.2	Heat Island Effect, Roof	1
X	1		Credit 8	Light Pollution Reduction	1
Yes	?	No	-		

Water Efficiency 6 0

26 Points

x		Prereq 1	Water Use Reduction	required
		Credit 1	Water Efficient Landscaping	2-4
x	2	Credit 2	Innovative Wastewater Technologies	2
x	4	Credit 3	Water Use Reduction	2-4

Yes ? No 18

0

0

0

Energy & Atmosphere

35 Points

Fundamental Commissioning of the Building Energy Required Prereq 1 Prereq 2 **Minimum Energy Performance** Required **Fundamental Refrigerant Management** Prereq 3 Required х 15 Credit 1 **Optimize Energy Performance** 1 to 19 Х Credit 2 **On-Site Renewable Energy** 1 to 7 3 **Enhanced Commissioning** Credit 3 2 Credit 4 **Enhanced Refrigerant Management** 2 Credit 5 **Measurement & Verification** 3 **Green Power** Credit 6 2

	IA]					TT
		NH	U	NU	тU	
-					<u> </u>	

SENIOR THESIS FINAL REPORT

INOVA FAIRFAX HOSPITAL SOUTH PATIENT TOWER April 3rd, 2012

					continued
Yes	?	No			
0	6	0	Materials	& Resources	13 Points
	1				
Y			Prereq 1	Storage & Collection of Recyclables	Required
			Credit 1.1	Building Reuse, Maintain Existing Walls, Floors & Roof	1-3
			Credit 1.2	Building Reuse, Maintain Existing Interior Non-Structura	
X	1		Credit 2	Construction Waste Management	1-2
X	2		Credit 3	Materials Reuse	1-2
X	1		Credit 4	Recycled Content	1-2
X	2		Credit 5	Regional Materials	1-2
			Credit 6	Rapidly Renewable Materials	1
			Credit 7	Certified Wood	1
Yes	?	No			
0	14	0	Indoor Er	vironmental Quality	15 Points
Υ			Prereq 1	Minimum IAQ Performance	Required
Y			Prereq 2	Environmental Tobacco Smoke (ETS) Control	Required
x	1		Credit 1	Outdoor Air Delivery Monitoring	1
x	1		Credit 2	Increased Ventilation	1
X	1		Credit 3.1	Construction IAQ Management Plan, During Construct	: 1
X	1		Credit 3.2	Construction IAQ Management Plan, Before Occupant	: 1
X	1		Credit 4.1	Low-Emitting Materials, Adhesives & Sealants	1
X	1		Credit 4.2	Low-Emitting Materials, Paints & Coatings	1
x	1		Credit 4.3	Low-Emitting Materials, Carpet Systems	1
x	1		Credit 4.4	Low-Emitting Materials, Composite Wood & Agrifiber Pr	ı 1
x	1		Credit 5	Indoor Chemical & Pollutant Source Control	1
X	1		Credit 6.1	Controllability of Systems, Lighting	1
X	1		Credit 6.2	Controllability of Systems, Thermal Comfort	1
X	1		Credit 7.1	Thermal Comfort, Design	1
X	1		Credit 7.2	Thermal Comfort, Verification	1
X	1		Credit 8.1	Daylight & Views, Daylight 75% of Spaces	1
			Credit 8.2	Daylight & Views, Views for 90% of Spaces	1
Yes	?	No			
0	0	0	Innovatio	ı in Design and Regional Priority	10Points
	0	X	Credit 1	Innovation in Design	1-5
	0	X	Credit 1.2	LEED Accredited Professional	1
Yes	0 ?	No	Credit 2	Regional Priority	1-4
		-			00 Dainte
0	57		Project To	otals (pre-certification estimates)	00 Points
			Certified 26-32	points Silver 33-38 points Gold 39-51 points Platinum 52-69 points	\$

APPENDIX E COST ESTIMATE

Estimate Name:	inova	
	Hospital, 4-8 Story with Precast	
	Concrete Panels With Exposed	
Building Type:	Aggregate / R/Conc. Frame	
Location:	FAIRFAX, VA	
Story Count:	12	
Story Height		
(L.F.):	12	
Floor Area (S.F.):	234000	
Labor Type:	Union	
Basement		
Included:	Yes	
Data Release:	Year 2010 Quarter 3	Costs are derived from a building model with basic component
Cost Per Square		Scope differences and market conditions can cause costs to var
East	6224 06	

significantly.

Parameters are not within the ranges recommended by RSMeans.

		% of	Cost Per	
		Total	S.F.	Cost
A Substructure		4.50%	\$10.75	\$2,516,500
A1010	Standard Foundations Strip footing, concrete, reinforced, load 14.8 KLF bearing capacity 6 KSF, 12" deep x 32" wide Spread footings, 3000 PSI concrete, load 400K, so capacity 6 KSF, 8' - 6" square x 27" deep		\$8.25	\$1,929,500
A1030	Slab on Grade		\$0.37	\$86,000
	Slab on grade, 4" thick, non industrial, reinforced	ł		
A2010	Basement Excavation Excavate and fill, 10,000 SF, 8' deep, sand, grave common earth, on site storage	, or	\$0.24	\$56,000
A2020	Basement Walls Foundation wall, CIP, 12' wall height, pumped, .5 24.29 PLF, 14" thick		\$1.90	\$445,000
B Shell		31.90%	\$76.04	\$17,793,500
B1010	Floor Construction Cast-in-place concrete column, 16" square, tied, load, 12' story height, 251 lbs/LF, 4000PSI Cast-in-place concrete column, 20" square, tied, load, 12' story height, 394 lbs/LF, 4000PSI Flat slab, concrete, with drop panels, 6" slab/2.5 12" column, 15'x15' bay, 75 PSF superimposed load Waffle slab, cast-in-place concrete, 12" deep rib, column, 30'x30' bay, 75 PSF superimposed load, total load	600K " panel, pad, 153 18"	\$24.2 3	\$5,670,000
B1020	Roof Construction		\$1.53	\$358,000

Foot:

Building Cost:

\$324.96

\$76,040,000

INOVA FAIRI	FAX HOSPITAL SOUTH PATIENT TOWER	April 3	8rd, 2012
	Floor, concrete, beam and slab, 35'x35' bay, 40 PSF superimposed load, 16" deep beam, 14" slab, 174 PSF total load		
B2010	Exterior Walls Exterior wall, precast concrete, flat, 8" thick, 10' x 10', white face, 2" rigid insulation, low rise	\$35.12	\$8,219,000
B2020	Exterior Windows	\$13.72	\$3,210,000
	Windows, aluminum, sliding, insulated glass, 5' x 3'	·	.,,,
B2030	Exterior Doors Door, aluminum & glass, with transom, full vision, double door, hardware, 6'-0" x 10'-0" opening	\$0.72	\$169,500
	Door, aluminum & glass, with transom, non-standard, double door, hardware, 6'-0" x 10'-0" opening Door, steel 18 gauge, hollow metal, 1 door with frame, no label, 3'-0" x 7'-0" opening		
B3010	Roof Coverings	\$0.69	\$161,500
	Roofing, single ply membrane, reinforced, PVC, 48 mils, fully adhered, adhesive		
	Insulation, rigid, roof deck, composite with 2" EPS, 1" perlite		
	Roof edges, aluminum, duranodic, .050" thick, 6" face		
	Flashing, copper, no backing, 16 oz, < 500 lbs		
B3020	Roof Openings	\$0.02	\$5,500
	Roof hatch, with curb, 1" fiberglass insulation, 2'-6" x 3'-0", galvanized steel, 165 lbs		
C Interiors	17.20%	\$40.93	\$9,578,500
C1010	Partitions Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation	-	\$1,503,000
C1010	Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame	-	
C1010 C1020	Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation	\$6.42	
	Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial	\$6.42	\$1,503,000
C1020	Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8"	\$6.42 \$10.63	\$1,503,000 \$2,487,500
	Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings	\$6.42	\$1,503,000
C1020 C1030	Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings Partitions, hospital curtain, ceiling hung, poly oxford cloth	\$6.42 \$10.63 \$0.93	\$1,503,000 \$2,487,500 \$217,000
C1020	Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings	\$6.42 \$10.63	\$1,503,000 \$2,487,500
C1020 C1030	 Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings Partitions, hospital curtain, ceiling hung, poly oxford cloth Stair Construction Stairs, steel, cement filled metal pan & picket rail, 12 	\$6.42 \$10.63 \$0.93 \$1.22	\$1,503,000 \$2,487,500 \$217,000
C1020 C1030 C2010	 Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings Partitions, hospital curtain, ceiling hung, poly oxford cloth Stairs, steel, cement filled metal pan & picket rail, 12 risers, with landing 	\$6.42 \$10.63 \$0.93 \$1.22	\$1,503,000 \$2,487,500 \$217,000 \$284,500
C1020 C1030 C2010	 Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Poor, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings Partitions, hospital curtain, ceiling hung, poly oxford cloth Stairs, steel, cement filled metal pan & picket rail, 12 risers, with landing Wall Finishes 	\$6.42 \$10.63 \$0.93 \$1.22	\$1,503,000 \$2,487,500 \$217,000 \$284,500
C1020 C1030 C2010	 Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings Partitions, hospital curtain, ceiling hung, poly oxford cloth Stairs, steel, cement filled metal pan & picket rail, 12 risers, with landing Wall Finishes Glazed coating Painting, interior on plaster and drywall, walls & ceilings, 	\$6.42 \$10.63 \$0.93 \$1.22	\$1,503,000 \$2,487,500 \$217,000 \$284,500
C1020 C1030 C2010	 Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings Partitions, hospital curtain, ceiling hung, poly oxford cloth Stair Construction Stairs, steel, cement filled metal pan & picket rail, 12 risers, with landing Wall Finishes Glazed coating Painting, interior on plaster and drywall, walls & ceilings, roller work, primer & 2 coats 	\$6.42 \$10.63 \$0.93 \$1.22	\$1,503,000 \$2,487,500 \$217,000 \$284,500
C1020 C1030 C2010	 Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings Partitions, hospital curtain, ceiling hung, poly oxford cloth Stairs, steel, cement filled metal pan & picket rail, 12 risers, with landing Wall Finishes Glazed coating Painting, interior on plaster and drywall, walls & ceilings, roller work, primer & 2 coats Vinyl wall covering, fabric back, medium weight 	\$6.42 \$10.63 \$0.93 \$1.22 \$6.68	\$1,503,000 \$2,487,500 \$217,000 \$284,500
C1020 C1030 C2010 C3010	Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings Partitions, hospital curtain, ceiling hung, poly oxford cloth Stair Construction Stairs, steel, cement filled metal pan & picket rail, 12 risers, with landing Wall Finishes Glazed coating Painting, interior on plaster and drywall, walls & ceilings, roller work, primer & 2 coats Vinyl wall covering, fabric back, medium weight Ceramic tile, thin set, 4-1/4" x 4-1/4" Floor Finishes Composition flooring, epoxy terrazzo, maximum	\$6.42 \$10.63 \$0.93 \$1.22 \$6.68	\$1,503,000 \$2,487,500 \$217,000 \$284,500 \$1,562,000
C1020 C1030 C2010 C3010	 Metal partition, 5/8" vinyl faced gypsum board face, 5/8"fire rated gypsum board base, 3-5/8" @ 24",s ame opposite face, no insulation Gypsum board, 1 face only, 5/8" with 1/16" lead Interior Doors Door, single leaf, kd steel frame, hollow metal, commercial quality, flush, 3'-0" x 7'-0" x 1-3/8" Door, single leaf, kd steel frame, metal fire, commercial quality, 3'-0" x 7'-0" x 1-3/8" Fittings Partitions, hospital curtain, ceiling hung, poly oxford cloth Stairs, steel, cement filled metal pan & picket rail, 12 risers, with landing Wall Finishes Glazed coating Painting, interior on plaster and drywall, walls & ceilings, roller work, primer & 2 coats Vinyl wall covering, fabric back, medium weight Ceramic tile, thin set, 4-1/4" x 4-1/4" Floor Finishes Composition flooring, epoxy terrazzo, maximum Terrazzo, maximum 	\$6.42 \$10.63 \$0.93 \$1.22 \$6.68 \$8.66	\$1,503,000 \$2,487,500 \$217,000 \$284,500 \$1,562,000 \$2,026,500

INOVA FAIRFAX HOSPITAL SOUTH PATIENT TOWER April 3rd, 2012
--

C3030	Vinyl, composition tile, maximum Tile, ceramic natural clay Ceiling Finishes Plaster ceilings, 3 coat prl, 3.4# metal lath, 3/4" cr furring, 1-1/2" crc, 36" OC support Acoustic ceilings, 3/4"mineral fiber, 12" x 12" tile, concealed 2" bar & channel grid, suspended support		\$6.40	\$1,498,000
D Services		39.10%	\$93.29	\$21,829,000
D1010	Elevators and Lifts Traction, geared hospital, 6000 lb, 6 floors, 12' sto height, 2 car group, 200 FPM	ry		\$1,510,500
D2010	Plumbing Fixtures Water closet, vitreous china, bowl only with flush wall hung Urinal, vitreous china, wall hung	valve,	\$11.20	\$2,621,000
	Lavatory w/trim, wall hung, PE on CI, 19" x 17" Kitchen sink w/trim, raised deck, PE on CI, 42" x 22 level, triple bowl Laundry sink w/trim, PE on CI, black iron frame, 48			
	double compartment Service sink w/trim, PE on CI,wall hung w/rim guar 18"	rd, 22" x		
	Bathtub, recessed, PE on CI, mat bottom, 5'-6" Ion Shower, stall, baked enamel, terrazzo receptor, 36 square Water cooler, electric, wall hung, wheelchair type GPH	5"		
D2020	Domestic Water Distribution Electric water heater, commercial, 100< F rise, 100 480 KW 1970 GPH	00 gal,	\$6.62	\$1,548,000
D2040	Rain Water Drainage		\$0.50	\$117,000
	Roof drain, CI, soil,single hub, 5" diam, 10' high Roof drain, CI, soil,single hub, 5" diam, for each ac foot add	lditional		
D3010	Energy Supply Hot water reheat system for 200,000 SF hospital		\$3.31	\$773,500
D3020	Heat Generating Systems		\$0.37	\$85,500
	Boiler, electric, steel, steam, 510 KW, 1,740 MBH			
D3030	Cooling Generating Systems Chiller, reciprocating, water cooled, standard cont 100 ton Chiller, reciprocating, water cooled, standard cont 150 ton Chiller, reciprocating, water cooled, standard cont	rols,	\$2.6 0	\$607,500
	200 ton			
D3090	Other HVAC Systems/Equip		\$30.93	\$7,237,500
	Ductwork for 200,000 SF hospital model			
	Boiler, cast iron, gas, hot water, 2856 MBH			
	Boiler, cast iron, gas, hot water, 320 MBH			
	AHU, rooftop, cool/heat coils, VAV, filters, 5,000 C			
JIANHONG OI	U SENIO	<u>R THESIS F</u>	INAL R	EPORT

	AHU, rooftop, cool/heat coils, VAV, filters, 10,000 CFM		
	AHU, rooftop, cool/heat coils, VAV, filters, 20,000 CFM		
	VAV terminal, cooling, hot water reheat, with actuator / controls, 200 CFM		
	AHU, rooftop, cool/heat coils, VAV, filters, 30,000 CFM		
	Roof vent. system, power, centrifugal, aluminum,		
	galvanized curb, back draft damper, 1500 CFM		
	Roof vent. system, power, centrifugal, aluminum,		
	galvanized curb, back draft damper, 2750 CFM Commercial kitchen exhaust/make-up air system, rooftop,		
	gas, 5000 CFM		
	Plate heat exchanger, 400 GPM		
D4010	Sprinklers	\$2.47	\$579,000
	Wet pipe sprinkler systems, steel, light hazard, 1 floor, 10,000 SF	·	. ,
	Wet pipe sprinkler systems, steel, light hazard, each		
	additional floor, 10,000 SF		
	Standard High Rise Accessory Package 8 story		
D4020	Standpipes	\$0.40	\$93,000
	Wet standpipe risers, class III, steel, black, sch 40, 4" diam		
	pipe, 1 floor Wet standpipe risers, class III, steel, black, sch 40, 4" diam		
	pipe, additional floors		
	Cabs, hose rack assembly, & extinguisher, 2-1/2" x 1-1/2"		
	valve & hose, steel door & frame		
	Alarm, electric pressure switch (circuit closer)		
	Escutcheon plate, for angle valves, polished brass, 2-1/2"		
	Fire pump, electric, with controller, 5" pump, 100 HP, 1000 GPM		
	Fire pump, electric, for jockey pump system, add		
	Siamese, with plugs & chains, polished brass, sidewalk, 4" x 2-1/2" x 2-1/2"		
	Valves, angle, wheel handle, 300 lb, 2-1/2"		
	Cabinet assembly, includes. adapter, rack, hose, and nozzle		
D5010	Electrical Service/Distribution	\$3.39	\$792,500
	Service installation, includes breakers, metering, 20' conduit & wire, 3 phase, 4 wire, 120/208 V, 2000 A		
	Feeder installation 600 V, including RGS conduit and		
	XHHW wire, 2000 A		
	Switchgear installation, incl switchboard, panels & circuit		
	breaker, 2000 A		
D5020	Lighting and Branch Wiring	\$18.48	\$4,324,000
	Receptacles incl plate, box, conduit, wire, 20 per 1000 SF, 2.4 W per SF, with transformer		
	Wall switches, 5.0 per 1000 SF		
	Miscellaneous power, 1.2 watts		
	Central air conditioning power, 4 watts		
	Motor installation, three phase, 460 V, 15 HP motor size		

INOVA FA	IRFAX HOSPITAL SOUTH PATIENT TO	WER	April 3	Brd, 2012
D5030	Motor feeder systems, three phase, feed to 200 V 230 V 7.5 HP, 460 V 15 HP, 575 V 20 HP Fluorescent fixtures recess mounted in ceiling, 0. per SF, 20 FC, 5 fixtures @32 watt per 1000 SF Communications and Security Communication and alarm systems, fire detection addressable, 100 detectors, includes outlets, box conduit and wire Fire alarm command center, addressable with vo wire & conduit	8 watt n, es,	\$2.35	\$551,000
	Internet wiring, 8 data/voice outlets per 1000 S.F			
D5090	Other Electrical Systems Generator sets, w/battery, charger, muffler and t switch, diesel engine with fuel tank, 100 kW Generator sets, w/battery, charger, muffler and t switch, diesel engine with fuel tank, 400 kW Uninterruptible power supply with standard batt 15 kVA/12.75 kW	ransfer	\$4.23	\$989,00 0
E Equipment	& Furnishings	7.30%	\$17.49	\$4,091,500
E1020	 Institutional Equipment Architectural equipment, laboratory equipment g washer, distilled water, economy Architectural equipment, sink, epoxy resin, 25" x Architectural equipment, laboratory equipment of hand held Fume hood, complex, including fixtures and duct Architectural equipment, medical equipment ste floor loading, double door, 28"x67"x52" Architectural equipment, medical equipment, medical equipment, medical equipment, medical equipment, medisystem for large hospital Architectural equipment, kitchen equipment, for dish washer, semiautomatic, 50 racks/hr Architectural equipment, kitchen equipment, for warmer, counter, 1.65 KW Architectural equipment, kitchen equipment, ket steam jacketed, 20 gallons Architectural equipment, kitchen equipment, ran restaurant type, burners, 2 ovens & 24" griddle Architectural equipment, kitchen equipment, ran including CO2 system, economy Special construction, refrigerators, prefabricated 7'-6" high, 6' x 6' Architectural equipment, darkroom equipment 	16" x 10" eye wash, work rilizers, edical gas nmercial nd tles, ige, ige hood, , walk-in,	\$13.18	\$3,084,000
E1000	combination, tray & tank sinks, washers & dry tal	bles	<u>ćo oo</u>	ćo
E1090 E2020	Other Equipment Moveable Furnishings		\$0.00 \$4.31	\$0 \$1,007,500
L2020	Furnishings, hospital furniture, patient wall syste utilities, deluxe , per room	m, no	<i>γ</i> 4.31	91,007, 30 0
F Special Con	struction	0.00%	\$0.00	\$0
G Building Sit	e Work	0.00%	\$0.00	\$0

Subtotal	100%	\$238.50 \$55,809,000
Contractor Fees (General Conditions, Overhead, Profit)	25.00%	\$59.63 \$13,952,500
Architectural Fees	9.00%	\$26.83 \$6,278,500
User Fees	0.00%	\$0.00 \$0
Total Building Cost		\$324.96 \$76,040,000

APPENDIX F BIM ANALYSIS

	Valu	Poopopo	Value	Cap	ability R	ating	Proce
BIM Use*	e to	Respons ible	to				ed
Divi 030	Proje	Party	Resp				with
	ct	r arty	Party				Use
	L Li avla (Liste (YES /
	High / Med /		High / Med /	Scale	12	(1 =	NO / MAYB
	Low		Low	Scale	Low)	(1 –	E
	LOW		LOW				<u> </u>
			R	lesource	ompetend	l Experienc	e
Record Modeling	HIGH	Contractor	MED	2	2	2	NO
		Facility Man		1	2	1	
		Designer	MED	3	3	3	
Cost Estimation	MED	Contractor	MED	2	1	1	YES
4D Modeling	HIGH	Contractor	HIGH	3	2	2	YES
3D Co. (Cons.)	HIGH	Contractor	HIGH	3	3	3	YES
		Subcontract		1	3	3	
		Designer	LOW	2	3	3	
Engineering Anal	HIGH	MEP Engr	HIGH	2	2	2	YES
		Architect	LOW	2	2	2	
Design Deviewa		Anab		4	0		VEC
Design Reviews	MED	Arch	LOW	1	2	1	YES
3D Co.(Design)	HIGH	Architect	HIGH	2	2	2	YES
	1.011	MEP Engr	MED	2	2	1	. 20
		Structural E		2	2	1	
Design Authoring	HIGH	Architect	HIGH	3	3	3	YES
		MEP Engr	MED	3	3	3	
		Structural E		3	3	3	
		Civil Engr	LOW	2	1	1	
Programming	MED						NO

APPENDIX G MILESTONES SCHEDULE

INOVA FAIRFAX HOSPITAL SOUTH PATIENT TOWER April 3rd, 2012

2 9	28	27	26	25	24	23	22	21	20	19	18	17	16	5	14	Chai	12	Ħ	10	9		7	6	5	4	ω	2		-	
			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	0	Mode
			FINAL INSPECTION	PROJECT COMMISSIONING	PROJECT CLOSEOUT	INTERIOR FITOUTS	MEP WORK	INSTALL ELEVATORS	CORE CONSTRUCTION	STUCCO	GLASS AND GLAZING	PRECAST	ROOF	HELIPAD	PH STRUCTURAL STEEL FRAMING	POUR DECK(LEVEL1-11)	SET REBAR(LEVEL1-11)	MECHANICAL ROUGH-IN(LEVEL1-11)	ELECTRICAL ROUGH-IN(LEVEL 1-11)	FRAME DECK(LEVEL1-11)	F/R/P COLUMNS AND WALLS(LEVEL 1-11) 97 days	EARTHWORK AND FOUNDATIONS	START CONSTRUCTION	UTILITIES AND SITE WORK	CONSTRUCTION	SUBMITTALS AND PROCUREMENT	BIM COORDINATION	PRECONSTRUCTION/PROCUREMENT	Tower	
			28 days	104 days	113 days	265 days	175 days	173 days	244 days	74 days	80 days	56 days	75 days	60 days	202 days	89 days	91 days	94 days	90 days	99 days	1) 97 days	183 days	0 days	167 days	290 days	359 days	131 days	110 days	595 days	
			Tue 5/15/12	Tue 1/17/12	Tue 1/17/12	Mon 5/16/11	Fri 5/13/11	Mon 8/22/11	Fri 5/13/11	Mon 8/1/11	Mon 8/1/11	Fri 9/2/11	Fri 9/2/11	Fri 12/16/11	Wed 9/14/11	Thu 4/14/11	Mon 4/11/11	Wed 4/6/11	Tue 4/12/11	Tue 3/29/11	Tue 3/29/11	Wed 10/20/10 Fri 7/1/11	Thu 7/8/10	Thu 7/8/10	Thu 7/8/10	Mon 10/18/1	Fri 4/1/11	Mon 3/8/10		
			Thu 6/21/12	Fri 6/8/12	Thu 6/21/12	Fri 5/18/12	Thu 1/12/12	. Wed 4/18/12	Wed 4/18/12	Thu 11/10/11	Fri 11/18/11	Fri 11/18/11	Thu 12/15/11	Thu 3/8/12	Wed 9/14/11 Thu 6/21/12	Tue 8/16/11	Mon 8/15/11	Mon 8/15/11	Mon 8/15/11	Fri 8/12/11	Tue 3/29/11 Wed 8/10/11	.0 Fri 7/1/11	Thu 7/8/10	Fri 2/25/11	Thu 7/8/10 Wed 8/17/11	Mon 10/18/10 Thu 3/1/12	Fri 9/30/11	Fri 8/6/10	Mon 3/8/10 Inu 6/21/12	
																							or of the second	167 days 🚺	290 days 🚺	359 days		110 days PRECONSTRUCTION/PROCUREMENT		Jan Mar May Jul

APPENDIX H Hill-Rom Product sheets

APPENDIX I DETAILED SCHEDULE

JIANHONG QIU

APPENDIX J SIPS SCHEDULE

Hill-Rom_®

Design Services: RoomBuilder_®

Visualize details with RoomBuilder. Design Service.

The closer you get to completing your renovation or new construction project, the greater the pressure to stay on schedule, and on budget. But still, it's the details that make the difference, so you need an efficient way to finalize room layouts and select architectural elements and patient room equipment.

That's where RoomBuilder. Design Service excels – at the point where the overall space has been planned, but the room details have not been finalized.

At a glance

- Interactive real-time visualization of your patient rooms
 - ICU/CCU, med-surg, bariatric, perinatal rooms and ED suites
 - Helps your team "see" and understand design alternatives and equipment considerations
- 2-D layouts and 3-D views for optimal spatial reference when you "imagine" the room in action
- Product and layout recommendations sent to your architect for efficient incorporation into the overall design
- 3-D animated room walkthrough on CD-ROM lets you experience the room you've designed, before you build it
- Entire process facilitated by Hill-Rom Design Service consultants experienced in patient room design

This collaborative service pairs a Hill-Rom Design Service consultant with your planning team and Hill-Rom sales representative to refine patient room design and select products and their placement for optimal caregiver efficiency and better patient care.

Investigate. Evaluate. Agree... on the spot.

The RoomBuilder. software tool features 3-D visualization that lets your team select, view and evaluate different room and equipment configurations. Because all stakeholders have the ability to "see" the room design in action, they can make confident decisions, on the spot. This prevents unnecessary spending, and keeps your project on schedule.

Drive toward decisions that work for your staff, your patients and your facility.

One of the key benefits to using RoomBuilder. Design Service is its collaborative approach that drives rapid decision making. You have the ability to include not only people concerned with room design, but also caregivers whose primary focus is how the room will be used. It saves your team – architect included – both time and effort as decisions can be made effectively and immediately.

Hill-Rom_®

Design Services: RoomBuilder₀

Draw on Hill-Rom's design experience.

The RoomBuilder. Design Service is anchored by an experienced member of the Hill-Rom Design Services team who will help you understand critical design requirements and how they affect the overall efficiency of the room. In the end, we help you find the most direct route to a design solution... without taking short-cuts along the way that can compromise the end result.

Reach design consensus and proceed with confidence in the construction.

As your team works with the projected room layout, you will readily identify potentially costly choices and discuss solutions that can be implemented on the spot. This decision-making process typically enables teams to rapidly reach consensus. This confidence can be translated to other stakeholders by showing the 3-D animated room walkthrough that Hill-Rom will send to you on CD-ROM.

Ask your Hill-Rom sales representative about other Design Services such as the Room of the Future Seminar and Room Design Workshop.

See your design in action.

Using your design input, a 2-D layout is projected onto the Design Center's large screen. This image lets you see how the pieces fit together as part of a comprehensive room design, and analyze traffic patterns for caregivers and patients.

How it works

- 1. Notify your Hill-Rom sales representative to request the RoomBuilder. Design Service
- 2. Your architect e-mails AutoCAD drawings to Hill-Rom Design Services consultant
- Assemble your team architect, planning team and other key decision makers – for the trip to Hill-Rom's Design Centers in Batesville, IN or Irvine, CA
- Participate in a RoomBuilder. session A Design Services consultant will construct AutoCAD 2-D layouts for you
- 5. Design Services will construct 3-D walkthrough animation included on presentation CD sent one week later

Hill-Rom reserves the right to make changes without notice in design, specifications and models. The only warranty Hill-Rom makes is the express written warranty extended on the sale or rental of its products.

© 2008 Hill-Rom Services, Inc. ALL RIGHTS RESERVED.

CTG572 rev 2 7/23/08

USA 800-445-3730 Canada 800-267-2337

www.hill-rom.com

Enhancing Outcomes for Patients and Their Caregivers...

Hill-Rom.

Design Services: Room Design Workshop

Design a room that's thought of everything. A better environment. A better experience. Better care.

Patient room design goes far beyond how a room simply looks. It influences how your patients feel and what they experience. It differentiates your facility from the next. It can

even improve the efficiency of your staff, enabling them to focus on providing better care. With Room Design Workshop (RDW), Hill-Rom's Design Services consultants help your planning team take all these factors into account. Whether you're planning to build a new ICU/CCU tower or remodeling to create more unique and effective Med-Surg patient rooms, this two-day, hands-on workshop fosters consensus and takes the guesswork out of room design.

At a glance

- Two-day Room Design Workshop
- Learning modules led by Hill-Rom's Design Services consultants
- Travel arrangements and accommodations provided for your planning team
- In-depth Summary Report of process and results
- CD-ROM of your custom room design

Bring designs and drawings to life.

Your planning team — including caregivers and your architect — will have the opportunity to experience the patient room environment they have designed. By seeing it for themselves, key stakeholders can make design decisions with confidence. Architects, in turn, can complete your project on time, with fewer change orders and unpleasant surprises.

Hill-Rom.

Design Services: Room Design Workshop

Start with thinking about your future patient room environment

1) Module 1 – Envision your future environment

The Workshop begins with visioning your "patient room of the future." We will explore the evolution of patient rooms and the development of cutting-edge design strategies.

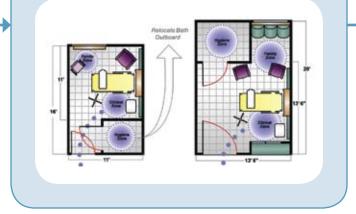
2 Module 2 – Define your future environment

A facilitator will work with your planning team to identify the key design attributes that will make your future patient rooms an exceptional healing environment.

Finish the design of your future patient room environment

5) Module 5 – Experiment with room designs

Your planning team will create room layouts using Hill-Rom's Room Design kits. These kits make it easy for the planning team to explore and experiment with alternative layouts.

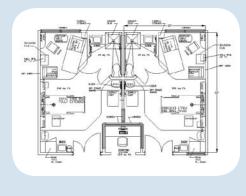

6 Module 6 – Experience the design in the Active Learning m Labs

Witness the exciting transformation of your room layout into a full-scale room model full of equipment in Hill-Rom's Active Learning. Lab. Here, your team can evaluate changes on the spot by positioning moveable wall panels and arranging equipment and furniture to refine the design and reach team consensus.

3 Module 3 – Discover architectural alternatives and innovations

Your team will review best-in-class projects and explore each design's benefits and trade-offs so that your team can make fully informed choices when you design your patient room.

4 Module 4 (Optional) – Solidify your vision with a site visit


Hill-Rom can arrange a site visit to an award-winning care unit with numerous innovative features that have enhanced patient satisfaction and improved care delivery. A second-night stay may be required.

7 Post-Workshop: Summary Report and animated walk-through of room design

AutoCAD drawing of your team's finalized room design for use by your architect.

Summary report provided on an easy-to-use CD-ROM. **RoomBuilder**_{sst} **Design Service 3-D animation** will allow other stakeholder's to "walk through" the final design.

Hill-Rom.

Design Services: Room Design Workshop

An environment that drives rapid decision making to resolve complex design challenges.

The workshop provides the necessary focus to leave behind the interruptions experienced at work and to be fully engaged in the process toward achieving design consensus. By creating a forum for generating ideas and allowing your team to experiment with room design, RDW's hands-on process encourages innovation and promotes forward thinking that goes beyond the typical discussions around room design, and in a much shorter time frame.

Take advantage of Hill-Rom's Professional Services consultants.

Hill-Rom's Professional Services consultants focus on practice areas such as Clinical, Safety, and Design, and work with health care organizations to achieve goals in effectiveness, efficiency and satisfaction. Our Design consultants work with you, helping you understand design choices for the patient room, starting with the construction planning stages and ending with the configuration of equipment within the room. Ask your Hill-Rom sales representative about our Room of the Future seminar and RoomBuilder₃₄ Design Service.

The results and output of Room Design Workshop prepare the hospital's design team to begin working with their architect with a common, validated design direction. The resulting designs, drawings or concepts are not a final construction-ready product. The hospital's licensed architect provides all legal, construction-ready drawings and documents.

How it works

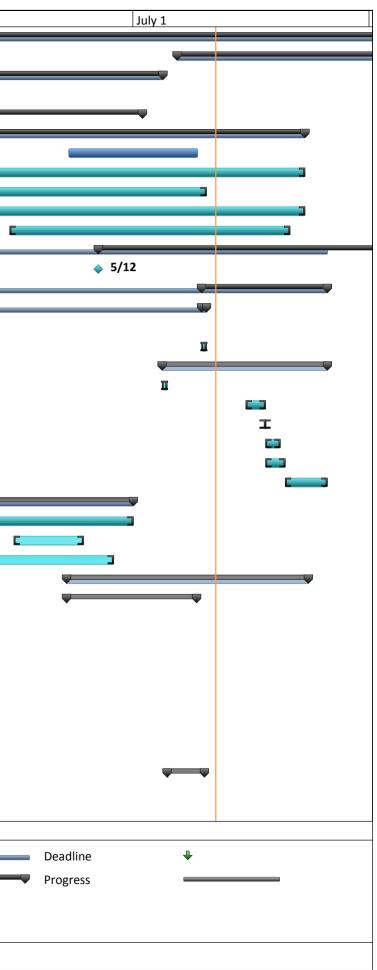
1 Submit required pre-work, including floor plans and drawings.

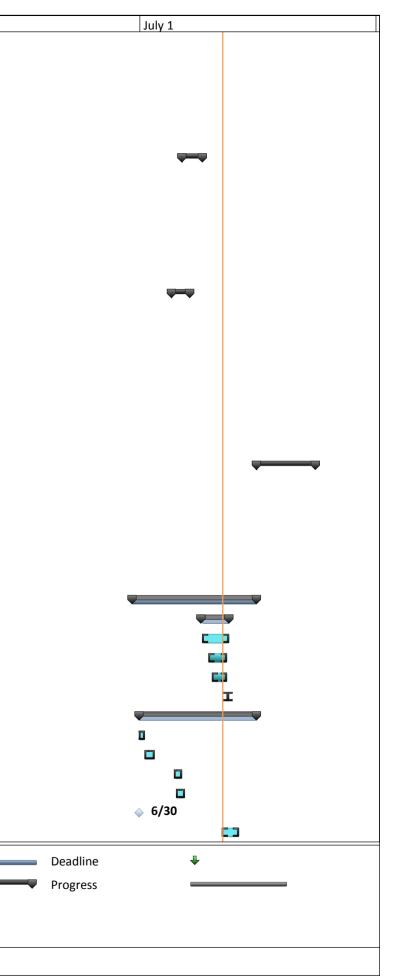
- 2 All key design participants both customer and architect(s) – travel to Hill-Rom's Corporate Conference Center for a two-day workshop. Hill-Rom takes care of all your travel needs, including a stay at JAWACDAH Farm, to ensure your total focus on the workshop.
- 3 Two to three weeks following the workshop, design participants and architects receive a summary report and CD-ROM containing the final design image, AutoCAD drawing, and animated room walk-through.

RoomBuilder and Active Learning Lab are trademarks of Hill-Rom Services, Inc. Hill-Rom is a registered trademark of Hill-Rom Services, Inc.

Hill-Rom reserves the right to make changes without notice in design, specifications and models. The only warranty Hill-Rom makes is the express written warranty extended on the sale or rental of its products.

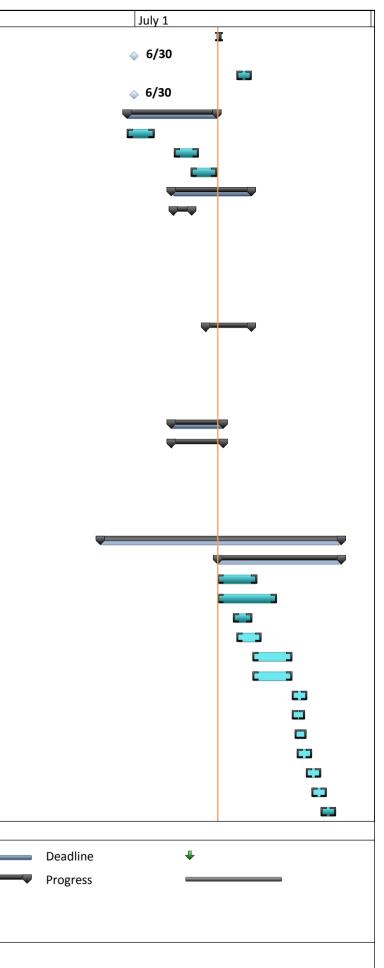
© 2008 Hill-Rom Services, Inc. ALL RIGHTS RESERVED.


CTG555 rev 2 9/9/08


USA 800-445-3730 Canada 800-267-2337 www.hill-rom.com

Enhancing Outcomes for Patients and Their Caregivers....

ask Name		Start	Finish	October 1	Septen	ber 1	Augu	ist 1
IOVA FAIRFAX SOUTH PATIENT			(Thu 6/21/12					
CONSTRUCTION MILESTONES			Thu 6/21/12					
PERMIT & SITE DEVELPMENT		Tue 11/3/09			l l	P		
PRECONSTRUCTION			Fri 8/6/10					
PURCHASING			Thu 7/14/11					
ENGINEERING		Mon 10/18/1						
BIM COORDINATION			Fri 9/30/11					
SUBMITTALS AND PROCURE		Mon 10/18/1						
TURNER REVIEW AND COOF	RDINATION		CThu 10/13/11					
OWNER REVIEW/APPROVE	SUBMITTALS	Wed 11/10/1						l
FABRICATION/DELIVERY		Fri 1/7/11	Thu 2/9/12					
CONSTRUCTION		Fri 5/13/11	Thu 6/21/12					
MAKE READY TO WORK		Thu 5/12/11	Thu 5/12/11					I
UTILITIES AND SITE WORK		Fri 10/7/11	Mon 4/2/12					
UTILITES		Fri 10/7/11	Thu 10/13/11					
INSTALL NEW TRENCH	DRAIN WEST OF WALL AND TIE IN	Thu 10/7/10	Wed 10/13/10					
INSTALL STORM/TREN	CH DRAIN AROUOND TRANSFORMER	RFri 10/7/11	Thu 10/13/11					
LANDSCAPE AND HARDS	CAPE	Fri 8/12/11	Mon 4/2/12					
POUR TRANSFORMER	PAD	Fri 8/12/11	Thu 8/18/11					
GRADE FOR REVISED E	NTRANCE DRIVE	Fri 12/9/11	Thu 1/5/12					
SITE CONCERETE		Thu 1/5/12	Thu 1/5/12					
PAVING		Fri 1/6/12	Thu 1/26/12					
INSTALL GRASS CRETE		Fri 1/6/12	Thu 2/2/12					
LANDSCAPE		Fri 2/3/12	Mon 4/2/12					
EARTHWORK AND FOUNDA	TIONS	Wed 10/20/1	(Fri 7/1/11					
BASEMENT		Fri 11/5/10	Fri 7/1/11					Í
GROUND LEVEL		Thu 1/13/11	Thu 4/21/11					
TUNNEL		Mon 11/15/1	CFri 6/3/11					
STURCTURE		Tue 3/29/11	Tue 3/6/12					
LEVEL1-11		Tue 3/29/11	Thu 9/29/11					
F/R/P COLUMNS AND	WALLS							
FRAME DECK								
MECHANICAL ROUGH-	IN							
SET REBAR								
ELECTRICAL ROUGH-IN								
POUR DECK								
STRIP FORMWORK								
REMOVE RESHORES								
ROOF		Fri 8/19/11	Mon 10/10/1	1				
F/R/P COLUMNS AND	WALLS	-						
FRAME DECK								
				I				
	Task	Project	Summary		Milestone 🔶		Manual Summary Rollup	
		-	-					
roject: INOVA FAIRFAX HOSTPITA	Split	Externa	I TASKS		Summary		Manual Summary	
Date: Thu 10/27/11	Milestone 🔶	Externa	l Milestone	 Manual 	Task 🗖	3	Start-only	Ľ
	Summary -	Inactive	Task	Duratio	n-only		Finish-only	
					Page 1			

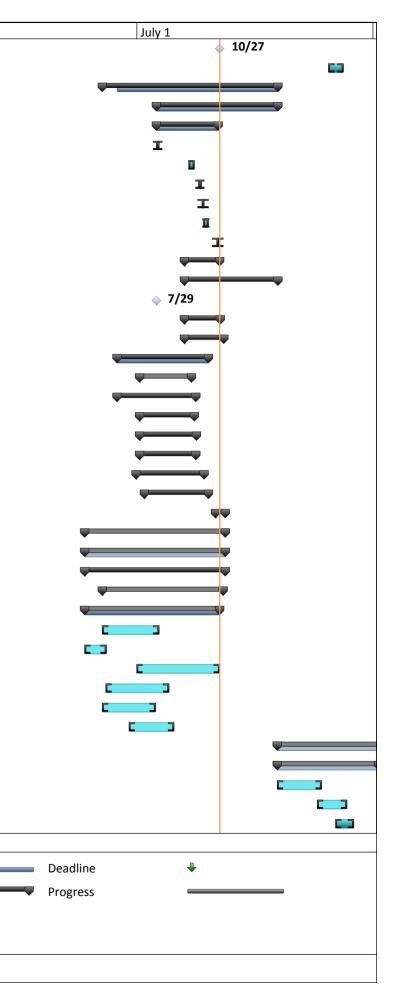


sk Name		Start	Finish	October 1		September 1	Aug	ust 1
ELECTRICAL ROUGH-IN								
MECHANICAL ROUGH-IN								
SET REBAR								
POUR DECK								
STRIP FORMWORK								
REMOVE RESHORES								
PENTHOUSE		Tue 8/30/11	Tue 9/27/11					
F/R/P COLUMNS AND WA	LLS							
FRAME WORK								
ELECTRICAL ROUGH-IN								
MECHANICAL ROUGH-IN								
SET REBAR								
POUR DECK								
PH STRUCTURAL STEEL FRAM	MING	Mon 8/15/11	L Fri 9/9/11					
FORM & POUR CONCRETE	CURBS AT ETB ROOF							
TEMP WATER PROOFING	FOR CURBS AT ETB ROOF			-				
ERECT STEEL FRAMING				-				
DETAIL STRUCTURE STEEL								
INSTALL DECK								
POUR SLAB METAL DECK								
HELIPAD		Wed 12/14/1	L1Tue 3/6/12					
INSTALL POSTS FOR HELIP	AD							
INSTALL HELIPAD FRAMIN	G							
INSTALL HELIPAD DECK AN	ID WALKWAY							
INSTALL ICE MELT SYSTEM	/DELUGE SYSTEMS							
HELIPAD TRIM AND TEST								
FAÇADE&ROOF		Mon 6/20/11	L Tue 12/13/11					
PENTHOUSE		Mon 9/26/11	L Fri 11/4/11					
LGMF/LAYOUT		Wed 9/28/11	Fri 11/4/11					
SHEATHING&INSTALL DUF	OCK	Fri 10/7/11	Tue 11/1/11					
INSTALL METAL PANELS		Wed 10/12/1	.1Tue 11/1/11					
CAULKING METAL PANELS		Wed 11/2/11	Fri 11/4/11					
ROOF		Thu 6/30/11	Tue 12/13/11					
PARAPET BACKUP, FRAMI	NG& SHEATHING-3RD FLOOR	Thu 6/30/11	Thu 7/7/11					
TEMP IN LOWER ROOF		Fri 7/8/11	Thu 7/21/11	-				
DEMO PARAPET WALL ON	ETB	Fri 8/19/11	Mon 8/29/11					
TEMP IN 11TH FLOOR AT E	TB	Mon 8/22/11		1				
BUILDING TEMP WATER T	IGHT THROUGH 3RD FLOOR			1				
INSTALL LOWER ROOF		Wed 10/26/1	.1Fri 11/18/11					
Ta	ask	Project	Summary	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Inactive Milestone	\diamond	Manual Summary Rollup	
oject: INOVA FAIRFAX HOSTPITA	olit	Externa	al Tasks		Inactive Summary		Manual Summary	
ite: Thu 10/27/11 M	ilestone 🔶	Externa	al Milestone	•	Manual Task	E	Start-only	C
Su	ummary	Inactive	e Task		Duration-only		Finish-only	ב
					Page 2			

ask Name		Start	Finish	October 1		September 1	A	ugust 1
	MING& SHEATHING-12RD FLOOR		1Mon 10/31/1				I	
BUILDING TEMP WATE	R TIGHT THROUGH 10TH FLOOR							
INSTALL UPPER ROOF		Wed 11/23/1	1Tue 12/13/11					
BUILDING PERM WATE	RTIGHT							
PRECAST		Mon 6/20/11	Tue 10/25/11					
GROUD-2ND LEVEL		Mon 6/20/11	Thu 7/28/11					
3RD-6TH LEVEL		Fri 8/26/11	Thu 9/29/11					
7TH-ROOFLEVEL		Mon 9/19/11	Tue 10/25/11					
GLASS AND GLAZING		Mon 8/22/11	Tue 12/13/11	-				
GROUND -2ND LEVEL		Thu 8/25/11	Mon 9/19/11					
WATERPROOF SLAB ED	OGE							
INSTALL PEA GRAVEL F	ILL			-				
CAULK PEA GRAVEL								
INSTALL FRAMING/GLA	ASS							
CAULKING								
3RD TO ROOF LEVEL		Mon 10/10/1	1Tue 12/13/11					
INSTALL LOUVERS			· · ·					
EAST ELEVATION								
SOUTH ELEVATION				-				
WEST ELEVATION								
STUCCO		Mon 8/22/11	Thu 11/3/11	-				
EAST ELEVATION			Thu 11/3/11	-				
LGMF/LAYOUT								
SHEATHING& TAPE JOI	NTS							
INSTALL DUROCK& TAI	PE JOINTS							
INSTALL MASONRY PA	RTITIONS							
CORE CONSTRUCTION		Fri 5/13/11	Thu 4/19/12					
ELEVATORS		Thu 10/27/11	Thu 4/19/12					
INSTALL HYDRAULIC LOB	BY ELEVATOR	Thu 10/27/11	Wed 12/21/1	1				
INSTALL ESCALATOR		Thu 10/27/11	Wed 1/18/12					
SET ELEV MACHINES IN E	MR	Fri 11/18/11	Wed 12/14/1	1				
INSTALL MACHINES/CON	TROLLERS	Wed 11/23/1	1Tue 12/27/11					
INSTALL ELEVATOR RAILS	-PATIENT	Fri 12/16/11	Thu 2/9/12					
INSTALL ELEVATOR RAILS	-PUBLIC	Fri 12/16/11	Thu 2/9/12					
SET ELEV DOOR BUCKS-P	ATIENTS	Fri 2/10/12	Thu 3/1/12					
SET ELEV DOOR BUCKS-P	UBLIC	Fri 2/10/12	Mon 2/27/12					
CLOSE UP ELEVATOR FRO	NTS-PUBLIC	Tue 2/14/12	Wed 2/29/12					
CLOSE UP ELEVATOR FRO	NTS-PATIENTS	Fri 2/17/12	Thu 3/8/12					
INSTALL CAB-PUBLIC		Thu 3/1/12	Wed 3/21/12					
INSTALL CABS-PATIENT		Fri 3/9/12	Thu 3/29/12					
TEST AND BALANCE-PUB	IC	Thu 3/22/12	Wed 4/11/12					
	Task	Project	Summary	~	Inactive Milestone	\diamond	Manual Summary Rol	lup 📖
	Split		-		Inactive Summary	Ų	Manual Summary	-
Project: INOVA FAIRFAX HOSTPITA Date: Thu 10/27/11					Manual Task	· · · · · ·	-	, L
	Milestone		l Milestone	▼			Start-only	-
	Summary	Inactive	Iask		Duration-only		Finish-only	

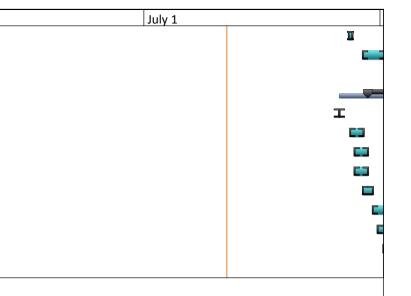
Page 3

sk Name	Start	Finish	October 1	Septemb	per 1 A
1 PATIENT ELEVATOR READY FOR TEMP U	SE				
TEST AND BALANCE PATIENT	Fri 3/30/12	Thu 4/19/12			
MEP	Fri 5/13/11	Tue 1/17/12			
ELECTRICAL RISERS	Fri 7/29/11	Tue 1/17/12			
CAFÉ RISER	Fri 7/29/11	Mon 10/24/1	.1		
MOUNT BACK BOSES&TRANSFORME	R Fri 7/29/11	Mon 8/1/11			
INSTALL FEEDER CONDUIT	Tue 9/13/1	1 Tue 9/20/11			
PIPE IN WIRE PANELS&TRANSFORM	Tue 9/27/1	1 Fri 9/30/11			
TERMINATE FEEDER CABLE	Mon 10/3/	11 Mon 10/3/11			
TESTING&INSPECTIONS	Tue 10/4/1	1 Mon 10/10/1	1		
ENERGIZE	Mon 10/24	/11Mon 10/24/1	1		
5TH FLOOR RISER	Wed 9/7/1	1 Wed 10/26/1	.1		
CRITICAL RISER	Wed 9/7/1	1 Tue 1/17/12			
GROUNDING SYSTEM					
LIFE SAFETY RISER	Wed 9/7/1	1 Thu 10/27/11	L		
PENTHOUSE RISER	Wed 9/7/1	1 Tue 11/1/11			
MECHANICAL RISERS	Fri 6/3/11	Mon 10/10/1	.1		
DOMESTIC WATER SYSTEM	Tue 7/5/11	Fri 9/16/11			
SANITARY/STORM WATER SYSTEMS	Fri 6/3/11	Thu 9/22/11			
HOT WATER SYSTEM	Tue 7/5/11	Tue 9/20/11			
CHILLED WATER SYSTEM		Fri 9/23/11	_		
STEAM RISERS		Thu 9/22/11			
DUCT RISERS		1 Tue 10/4/11			
MED GAS RISERS		1 Mon 10/10/1	1		
CONTROLS		1 Thu 11/3/11			
NTERIOR FITOUTS		11 Thu 11/3/11			
BASEMENT		11 Thu 11/3/11			
ETB		11 Thu 11/3/11			
ELECTRICAL SYSTEMS		Mon 10/31/1	.1		
MECHANICAL SYSTEMS		11 Wed 10/26/1			
DOMIESTIC WATER SYSTEM	Fri 5/13/11				
SANITARY/STORM SYSTEM		11 Wed 5/18/11			
HOT WATER HEATING	Fri 7/1/11	Wed 10/26/1			
STEAM SYSTEM		11 Mon 8/15/11			
HVAC SYSTEM		Wed 7/27/11			
MED GAS SYSTEM		11 Mon 8/22/11	-1		
PROJECT CLOSEOUT		2 Thu 6/21/12	-		
COMMISSIONING		2 Fri 6/8/12	-		
HVAC EQUIPMENT		2 Mon 3/19/12	-		
ELECTRICAL SERVICE		12 Tue 4/24/12	-		
MEDICAL GAS SYSTEMS		2 Fri 5/4/12	_		
	101011 47 57 1				
Task		act Summary	Inactive N	lilestone 🔶	Manual Summary Rol
	-	ect Summary			-
oject: INOVA FAIRFAX HOSTPITA Split ate: Thu 10/27/11 Milestone	Exter	rnal Tasks	Inactive S	-	Manual Summary
		nal Milestone	Manual Ta		Start-only


Duration-only

Page 4

Finish-only


Inactive Task

Summary

k Name	Start	Finish	October 1	Septembe
CHANGE FILTERS	Tue 4/17/12	Mon 4/23/12		
PLUMBING SYSTEMS	Mon 5/7/12	Fri 6/8/12		
SYSTEMS ACCEPTANCE	Fri 6/8/12	Fri 6/8/12		
FINAL INSPECTION	Tue 5/15/12	Thu 6/21/12		
FINAL MECHANICAL INSPECTION	Wed 4/4/12	Wed 4/4/12		
ELEVATOR FINALS	Thu 4/19/12	Wed 5/9/12		
LOW VOLTAGE FINALS	Wed 4/25/12	Tue 5/15/12		
ELECTRICAL FINAL	Wed 4/25/12	Tue 5/15/12		
FINAL PLUMBING INSPECTION	Mon 5/7/12	Tue 5/22/12		
FIRE ALARM FINALS	Mon 5/21/12	Fri 6/15/12		
BUILDING FINAL	Mon 5/28/12	Fri 6/15/12		
SITE FINAL	Tue 6/5/12	Mon 6/18/12		
NON-RUP ISSUED BY COUNTY	Thu 6/21/12	Thu 6/21/12		

Task		Project Summary	—	Inactive Milestone	\diamond	Manual Summary Rollup	
Split		External Tasks		Inactive Summary		Manual Summary	
Milestone	♦	External Milestone	♦	Manual Task	C 3	Start-only	C
Summary		Inactive Task		Duration-only		Finish-only	3
				Page 5			
-	Split Milestone	Split Milestone \blacklozenge	Split External Tasks Milestone External Milestone	Split External Tasks Milestone External Milestone 	Split External Tasks Inactive Summary Milestone External Milestone Manual Task Summary Inactive Task Duration-only	Split External Tasks Inactive Summary Milestone External Milestone Manual Task Duration-only Inactive Task Manual Task	Split External Tasks Inactive Summary Milestone External Milestone Manual Task Summary Inactive Task Duration-only

Deadline
Progress

₽

1 III 2 3 4	Mode		Duration	Start	Finish	eptember 1	10/2	November 1	11/20	January 1	1/22	March 1	2/20	
2 3		Phase1 Supersturcture	84 days?	Tue 10/26/10	Fri 2/18/11	9/5	10/3	10/31	11/28	12/26	1/23	2/20	3/20	Z
3	· 🖓	3rd floor	10 days	Tue 10/26/10										
	- ^	4th floor	10 days	Mon 11/8/10		_	Γ							
		5th floor	12 days	Fri 11/19/10										
5	- ^	6th floor	10 days	Mon 12/6/10										
6	*	7th floor	10 days	Fri 12/17/10)								
7	- ^	8th floor	10 days	Thu 12/30/10					_					
8	- A	9th floor	10 days	Wed 1/12/11		-					1			
9	- A	10th floor	10 days	Tue 1/25/11		-								
10	*	11th floor	10 days	Mon 2/7/11										
11 💷	_	Phase2 Above Ceiling	95 days	Fri 12/17/10										
		MEP		, , -	- , -,									
12	*	3rd floor	10 days	Fri 12/17/10	Thu 12/30/10									
13	*	4th floor	, 10 days	Thu 12/30/10										
14	*	5th floor	, 15 days	Wed 1/12/11						C				
15	*	6th floor	10 days	Tue 2/1/11	Mon 2/14/11									
16	*	7th floor	10 days	Tue 2/15/11	Mon 2/28/11									
17	*	8th floor	10 days	Mon 2/28/11	Fri 3/11/11	_								
18	*	9th floor	10 days	Fri 3/11/11	Thu 3/24/11									
19	*	10th floor	10 days	Thu 3/24/11	Wed 4/6/11								[]	
20	*	11th floor	10 days	Sat 4/16/11	Thu 4/28/11									
21	3	Phase3 facede	40 days?	Wed 1/12/11	Tue 3/8/11									
22	*	West façade	15 days	Wed 1/12/11	Tue 2/1/11									
23	*	South façade	10 days	Tue 2/1/11	Mon 2/14/11									
24	*	East Façade	15 days	Mon 2/14/11	Fri 3/4/11						C			
25 💷	3	Phase4 Interior	105 days	Fri 3/4/11	Thu 7/28/11									
26	*	3rd floor	12 days	Fri 3/4/11	Mon 3/21/11									
27	*	4th floor	12 days	Mon 3/21/11	Tue 4/5/11									
28	*	5th floor	18 days	Tue 4/5/11	Thu 4/28/11									-
29	*	6th floor	12 days	Thu 4/28/11	Fri 5/13/11									ſ
30	*	7th floor	12 days	Fri 5/13/11	Mon 5/30/11									
31	*	8th floor	12 days	Mon 5/30/11	Tue 6/14/11									
32	*	9th floor	12 days	Tue 6/14/11	Wed 6/29/11									
33	*	10th floor	12 days	Wed 6/29/11	Thu 7/14/11									
34	*	11th floor	12 days	Thu 7/7/11	Fri 7/22/11									

Ν	May 1			Jı	ıly 1				S
4/1	7	5/15		6/12		7/10		8/7	
C									
			-						
			C						
					C				
						I			
	Deadlin	e		+					
	Progress								
•	1 Ogles	J					-		